Abstract

This work is devoted to present and to demonstrate a novel approach for the fabrication of micro-structured fiber Bragg gratings (MSFBGs) to be employed as technological platform for advanced opto-chemical sensors. Basically, the MSFBG consists in a localized SRI sensitization of the grating by deep cladding stripping. The introduction of a perturbation or defect along the grating leads to the formation of a defect state inside the FBG spectral response that is tunable through the surrounding medium refractive index. While its spectral features for sensing and communication applications have been widely described and commented elsewhere, here a simple fabrication procedure is presented as suitable technological assessment enabling cost effective and simple MSFBG production. It relies on a two steps technique based on arc-discharge procedure as fiber pre-treatment and mask-less wet chemical etching to locally sensitize the FBG to external refractive index. The new, simple and low-cost approach overcomes some technological drawbacks related to previous fabrication techniques adopting patterned masking procedures during the etching process. This work demonstrates the effectiveness of the proposed method reporting a detailed description of single and two defects MSFBG fabrication.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors” in Fiber Optics Sensors, New York: Dekker, Chapter 4, 2002.
  2. A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House, 1999.
  3. R. Kashyap, Fiber Bragg Gratings, San Diego: Academic Press, 1999.
  4. A. Mendez, “Fiber Bragg grating sensors: a market overview,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
    [Crossref]
  5. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
    [Crossref]
  6. H. Patrick, A. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
    [Crossref]
  7. M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
    [Crossref]
  8. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
    [Crossref] [PubMed]
  9. G. Laffont and P. Ferdinand, “Tilted short-period fiber-bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
    [Crossref]
  10. Y. Y. Shevchenko and J. Albert, ,,Plasmon resonances in gold-coated tilted fiber Bragg gratings”, Opt. Lett. 32, 211–213, (2007).
    [Crossref] [PubMed]
  11. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proceedings of SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
    [Crossref]
  12. K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
    [Crossref]
  13. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
    [Crossref]
  14. R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
    [Crossref]
  15. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
    [Crossref]
  16. A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.
  17. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
    [Crossref]
  18. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
    [Crossref]
  19. A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
    [Crossref]
  20. A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
    [Crossref]
  21. B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
    [Crossref]
  22. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
    [Crossref]
  23. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
    [Crossref]
  24. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
    [Crossref]
  25. L. Wei and J. W. Y. Lit, “Phase shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405–1410 (1997).
    [Crossref]
  26. R. Zengerle and O. Leminger, “Phase shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
    [Crossref]
  27. A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
    [Crossref]
  28. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
    [Crossref]
  29. M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
    [Crossref]
  30. M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 26, 1613–1625 (2008).
    [Crossref]
  31. A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
    [Crossref] [PubMed]
  32. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848–15853 (2007).
    [Crossref] [PubMed]
  33. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16, 15332–15342 (2008).
    [Crossref] [PubMed]
  34. D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Opt. Commun. 127, 200–204 (1996).
    [Crossref]

2008 (2)

2007 (9)

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
[Crossref] [PubMed]

K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848–15853 (2007).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Mendez, “Fiber Bragg grating sensors: a market overview,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

Y. Y. Shevchenko and J. Albert, ,,Plasmon resonances in gold-coated tilted fiber Bragg gratings”, Opt. Lett. 32, 211–213, (2007).
[Crossref] [PubMed]

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
[Crossref]

2006 (2)

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

2005 (5)

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

2003 (1)

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

2002 (2)

X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long period fiber gratings,” J. Lightwave Technol. 20, 255–266 (2002).
[Crossref]

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

2001 (2)

G. Laffont and P. Ferdinand, “Tilted short-period fiber-bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

1998 (3)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

H. Patrick, A. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

1997 (1)

L. Wei and J. W. Y. Lit, “Phase shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405–1410 (1997).
[Crossref]

1996 (2)

D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Opt. Commun. 127, 200–204 (1996).
[Crossref]

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proceedings of SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
[Crossref]

1995 (1)

R. Zengerle and O. Leminger, “Phase shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

Ahlfeldt, H.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Albert, J.

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

Asseh, A.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Bartelt, H.

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
[Crossref]

Bennion, I.

Bentley, W. E.

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Bucholtz, F.

Campopiano, S.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 26, 1613–1625 (2008).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16, 15332–15342 (2008).
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

Chen, N.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[Crossref]

Chen, X.

Chen, Z.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Chiang, K. S.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Chryssis, A. N.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

Contessa, L.

Cui, Y.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[Crossref]

Cusano, A.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 26, 1613–1625 (2008).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16, 15332–15342 (2008).
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Cutolo, A.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16, 15332–15342 (2008).
[Crossref] [PubMed]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 26, 1613–1625 (2008).
[Crossref]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
[Crossref] [PubMed]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Dagenais, M.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

Ecke, W.

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
[Crossref]

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

Edwall, G.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

Giordano, M.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Hagemann, V.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

Hewlett, S. J.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proceedings of SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
[Crossref]

Hyunmin, Y.

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

Iadicicco, A.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 26, 1613–1625 (2008).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16, 15332–15342 (2008).
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, “Mode transition in high refractive index coated long period gratings,” Opt. Express 14, 19–34 (2006).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House, 1999.

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings, San Diego: Academic Press, 1999.

Kersey, A.

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

Lai, Y.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

Lee, S. M.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

Leminger, O.

R. Zengerle and O. Leminger, “Phase shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

Lit, J. W. Y.

L. Wei and J. W. Y. Lit, “Phase shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405–1410 (1997).
[Crossref]

Love, J. D.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proceedings of SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
[Crossref]

Meltz, G.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proceedings of SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
[Crossref]

Mendez, A.

A. Mendez, “Fiber Bragg grating sensors: a market overview,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

Ng, M. N.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Othonos, A.

D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Opt. Commun. 127, 200–204 (1996).
[Crossref]

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House, 1999.

Paladino, D.

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, and A. Cutolo, “Photonic band-gap engineering in UV fiber gratings by the arc discharge technique,” Opt. Express 16, 15332–15342 (2008).
[Crossref] [PubMed]

A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, “Micro-structured fiber Bragg gratings: optimization of the fabrication process,” Opt. Express 15, 15011–15021 (2007).
[Crossref] [PubMed]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

Patrick, H.

Persiano, G. V.

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Pilla, P.

Pisco, M.

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Structured Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 26, 1613–1625 (2008).
[Crossref]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

Sahlgren, B.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Saini, S. S.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

Sandgren, S.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

Schwotzer, G.

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
[Crossref]

Shevchenko, Y. Y.

Shu, X.

Stubbe, R.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

Sugden, K.

Usbeck, K.

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

Uttamchandani, D.

D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Opt. Commun. 127, 200–204 (1996).
[Crossref]

Wei, L.

L. Wei and J. W. Y. Lit, “Phase shifted Bragg grating filters with symmetrical structures,” J. Lightwave Technol. 15, 1405–1410 (1997).
[Crossref]

Willsch, R.

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
[Crossref]

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

Yun, B.

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[Crossref]

Zengerle, R.

R. Zengerle and O. Leminger, “Phase shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13, 2354–2358 (1995).
[Crossref]

Zhang, L.

Zhang, W.

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors” in Fiber Optics Sensors, New York: Dekker, Chapter 4, 2002.

Zhou, K.

Electron. Lett. (1)

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano “Microstructured fiber Bragg Gratings: analysis and fabrication,” Electron. Lett. 41, 466–468 (2005).
[Crossref]

Fiber Integr. Opt. (1)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais, “Detecting hybridization of DNA by highly sensitive evanescent field etched core fiber Bragg grating sensors,” IEEE J. Sel. Topics Quantum Electron. 11, 864–872 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (6)

B. Yun, N. Chen, and Y. Cui, “Highly sensitive liquid-level sensor based on etched fiber Bragg grating,” IEEE Photon. Technol. Lett. 19, 1747–1749 (2007).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Refractive index sensor based on micro-structured fiber Bragg grating,” IEEE Photon. Technol. Lett. 17, 1250–1252 (2005).
[Crossref]

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[Crossref]

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 18, 178–180 (2006).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. A (1)

A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo, “Thinned and micro-structured fibre Bragg gratings: towards new all-fibre high-sensitivity chemical sensors,” J. Opt. A 7, 734–741 (2005).
[Crossref]

Meas. Sci. Technol. (2)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[Crossref]

G. Laffont and P. Ferdinand, “Tilted short-period fiber-bragg-grating induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[Crossref]

Opt. Commun. (1)

D. Uttamchandani and A. Othonos, “Phase shifted Bragg gratings formed in optical fibres by post-fabrication thermal processing,” Opt. Commun. 127, 200–204 (1996).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (2)

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part I: Spectral characteristics,” Opt. Fiber Technol. 13, 281–290 (2007).
[Crossref]

A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, “Micro-structured fiber Bragg gratings. Part II: Towards advanced photonic devices,” Opt. Fiber Technol. 13, 291–301 (2007).
[Crossref]

Opt. Lett. (1)

Proc. IEEE Sensors Conference (1)

A. Iadicicco, A. Cusano, G. V. Persiano, A. Cutolo, R. Bernini, and M. Giordano, “Refractive index measurements by fiber Bragg grating sensor,” Proc. IEEE Sensors Conference 1, Toronto - Canada, 2003.

Proceedings of SPIE (5)

R. Willsch, W. Ecke, G. Schwotzer, and H. Bartelt, “Nanostructure-based optical fibre sensor systems and examples of their application,” Proceedings of SPIE 6585, International Congress on Optics and Optoelectronics, 2007.
[Crossref]

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proceedings of SPIE 2836, Chemical, Biochemical, and Environmental Fiber Sensors VIII, 1996.
[Crossref]

K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fiber Bragg gratings,” Proceedings of SPIE 3483, First European Workshop on Optical Fibre Sensors, 1998.
[Crossref]

M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano, “Micro-structured chirped fiber Bragg gratings: towards new spatial encoded fiber optic sensors,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

A. Mendez, “Fiber Bragg grating sensors: a market overview,” Proceedings of SPIE 6619, Third European Workshop on Optical Fibre Sensors, 2007.
[Crossref]

Other (3)

L. Zhang, W. Zhang, and I. Bennion, “In-fiber grating optic sensors” in Fiber Optics Sensors, New York: Dekker, Chapter 4, 2002.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, Boston: Artech House, 1999.

R. Kashyap, Fiber Bragg Gratings, San Diego: Academic Press, 1999.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a). Schematic diagram (not in scale) of the EAD setup; (b). Locally tapered FBG (not in scale); (c). Schematic diagram (not in scale) of the FBG arrangement for the etching procedure; (d). FBG after uniform HF based wet chemical etching (not in scale).

Fig. 2.
Fig. 2.

(a). Optical photograph of the FBG region tapered by EAD; (b). Comparison between unperturbed and tapered FBG spectra.

Fig. 3.
Fig. 3.

FBG spectral evolution during the etching process.

Fig. 4.
Fig. 4.

(a). Optical photograph of the MSFBG perturbation; (b). Comparison between unperturbed FBG and MSFBG spectra in air.

Fig. 5.
Fig. 5.

MSFBG dependence on the SRI: (a) Spectral response for different SRIs; (b) Defect state wavelength shift versus the SRI.

Fig. 6.
Fig. 6.

Optical photograph of the EAD-treated grating at 3 mm and 4 mm from the interrogation end.

Fig. 7.
Fig. 7.

FBG spectral evolution during the EAD operations.

Fig. 8.
Fig. 8.

Optical photograph of the etched device. It focuses on defects at 3 mm and 4 mm from the interrogation end.

Fig. 9.
Fig. 9.

Comparison between unperturbed FBG and multi-defect MSFBG spectra in air

Fig. 10.
Fig. 10.

Defect states wavelength shift versus the SRI of right (a) and left (b) defect state.

Metrics