Abstract

In optical tweezers, thermal drift is detrimental for high-resolution measurements. In particular, absorption of the trapping laser light by the microscope objective that focuses the beam leads to heating of the objective and subsequent drift. This entails long equilibration times which may limit sensitive biophysical assays. Here, we introduce an objective temperature feedback system for minimizing thermal drift. We measured that the infrared laser heated the objective by 0.7K per watt of laser power and that the laser focus moved relative to the sample by ≈1 nm/mK due to thermal expansion of the objective. The feedback stabilized the temperature of the trapping objective with millikelvin precision. This enhanced the long-term temperature stability and significantly reduced the settling time of the instrument to about 100 s after a temperature disturbance while preserving single DNA base-pair resolution of surface-coupled assays. Minimizing systematic temperature changes of the objective and concurrent drift is of interest for other high-resolution microscopy techniques. Furthermore, temperature control is often a desirable parameter in biophysical experiments.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk and W. W. Webb, "Optical measurement of picometer displacements of transparent microscopic objects," Appl. Opt. 29, 2382-2391 (1990).
    [CrossRef] [PubMed]
  2. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
    [CrossRef] [PubMed]
  3. W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007).
    [CrossRef] [PubMed]
  4. J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
    [CrossRef] [PubMed]
  5. A. R. Carter, G.M. King, T. A. Ulrich,W. Halsey, D. Alchenberger, and T. T. Perkins, "Stabilization of an optical microscope to 0.1 nm in three dimensions," Appl. Opt. 46, 421-427 (2007).
    [CrossRef] [PubMed]
  6. E. Schäffer, S. F. Nørrelykke, and J. Howard, "Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers," Langmuir 23, 3654-3665 (2007).
    [CrossRef] [PubMed]
  7. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
    [CrossRef] [PubMed]
  8. K. Neuman and S. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
    [CrossRef]
  9. K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
    [CrossRef] [PubMed]
  10. H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
    [CrossRef] [PubMed]
  11. E.Fällman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107-2113 (1997).
    [CrossRef] [PubMed]
  12. V. Bormuth, J. Howard, and E. Schäffer, "LED illumination for video-enhanced DIC imaging of single microtubules," J. Microsc. 226, 1-5 (2007).
    [CrossRef] [PubMed]
  13. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
    [CrossRef] [PubMed]
  14. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, "Calibration of optical tweezers with positional detection in the back focal plane," Rev. Sci. Instrum. 77, 103,101 (2006).
  15. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
    [CrossRef]
  16. A. R. Carter, Y. Seol, and T. T. Perkins, "Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution," Biophys. J. 96, 2926-2934 (2009).
    [CrossRef] [PubMed]
  17. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated-emission—stimulatedemission- depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).
    [CrossRef] [PubMed]

2009 (2)

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

A. R. Carter, Y. Seol, and T. T. Perkins, "Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution," Biophys. J. 96, 2926-2934 (2009).
[CrossRef] [PubMed]

2008 (1)

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

2007 (4)

A. R. Carter, G.M. King, T. A. Ulrich,W. Halsey, D. Alchenberger, and T. T. Perkins, "Stabilization of an optical microscope to 0.1 nm in three dimensions," Appl. Opt. 46, 421-427 (2007).
[CrossRef] [PubMed]

E. Schäffer, S. F. Nørrelykke, and J. Howard, "Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers," Langmuir 23, 3654-3665 (2007).
[CrossRef] [PubMed]

W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007).
[CrossRef] [PubMed]

V. Bormuth, J. Howard, and E. Schäffer, "LED illumination for video-enhanced DIC imaging of single microtubules," J. Microsc. 226, 1-5 (2007).
[CrossRef] [PubMed]

2006 (1)

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, "Calibration of optical tweezers with positional detection in the back focal plane," Rev. Sci. Instrum. 77, 103,101 (2006).

2005 (2)

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Neuman and S. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

1999 (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

1997 (2)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

E.Fällman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107-2113 (1997).
[CrossRef] [PubMed]

1994 (2)

1990 (1)

Aathavan, K.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

Alchenberger, D.

Anderson, D. L.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Arias-Gonzalez, J. R.

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

Axner, O.

Block, S.

K. Neuman and S. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Block, S. M.

W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007).
[CrossRef] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Bormuth, V.

V. Bormuth, J. Howard, and E. Schäffer, "LED illumination for video-enhanced DIC imaging of single microtubules," J. Microsc. 226, 1-5 (2007).
[CrossRef] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

Carter, A. R.

A. R. Carter, Y. Seol, and T. T. Perkins, "Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution," Biophys. J. 96, 2926-2934 (2009).
[CrossRef] [PubMed]

A. R. Carter, G.M. King, T. A. Ulrich,W. Halsey, D. Alchenberger, and T. T. Perkins, "Stabilization of an optical microscope to 0.1 nm in three dimensions," Appl. Opt. 46, 421-427 (2007).
[CrossRef] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Denk, W.

Fällman, E.

Florin, E. L.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Gibson, G. M.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

Greenleaf, W. J.

W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007).
[CrossRef] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

Grimes, S.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Halsey, W.

Hell, S. W.

Hörber, J. K. H.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

Howard, J.

E. Schäffer, S. F. Nørrelykke, and J. Howard, "Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers," Langmuir 23, 3654-3665 (2007).
[CrossRef] [PubMed]

V. Bormuth, J. Howard, and E. Schäffer, "LED illumination for video-enhanced DIC imaging of single microtubules," J. Microsc. 226, 1-5 (2007).
[CrossRef] [PubMed]

Jardine, P. J.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Keen, S.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

King, G.M.

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Leach, J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

Mao, H. B.

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Neuman, K.

K. Neuman and S. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Nørrelykke, S. F.

E. Schäffer, S. F. Nørrelykke, and J. Howard, "Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers," Langmuir 23, 3654-3665 (2007).
[CrossRef] [PubMed]

Padgett, M. J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

Perkins, T. T.

A. R. Carter, Y. Seol, and T. T. Perkins, "Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution," Biophys. J. 96, 2926-2934 (2009).
[CrossRef] [PubMed]

A. R. Carter, G.M. King, T. A. Ulrich,W. Halsey, D. Alchenberger, and T. T. Perkins, "Stabilization of an optical microscope to 0.1 nm in three dimensions," Appl. Opt. 46, 421-427 (2007).
[CrossRef] [PubMed]

Pralle, A.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

Prummer, M.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

Schäffer, E.

E. Schäffer, S. F. Nørrelykke, and J. Howard, "Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers," Langmuir 23, 3654-3665 (2007).
[CrossRef] [PubMed]

V. Bormuth, J. Howard, and E. Schäffer, "LED illumination for video-enhanced DIC imaging of single microtubules," J. Microsc. 226, 1-5 (2007).
[CrossRef] [PubMed]

Seol, Y.

A. R. Carter, Y. Seol, and T. T. Perkins, "Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution," Biophys. J. 96, 2926-2934 (2009).
[CrossRef] [PubMed]

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

Smith, S. B.

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

Stelzer, E. H. K.

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Tinoco, I.

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

Ulrich, T. A.

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Webb, W. W.

Wichmann, J.

Woodside, M. T.

W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007).
[CrossRef] [PubMed]

Wright, A. J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (2)

W. J. Greenleaf, M. T. Woodside, and S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annu. Rev. Biophys. Biomol. Struct. 36, 171-190 (2007).
[CrossRef] [PubMed]

K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biophys. J. (3)

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997).
[CrossRef] [PubMed]

A. R. Carter, Y. Seol, and T. T. Perkins, "Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution," Biophys. J. 96, 2926-2934 (2009).
[CrossRef] [PubMed]

H. B. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, and C. Bustamante, "Temperature control methods in a laser tweezers system," Biophys. J. 89, 1308-1316 (2005).
[CrossRef] [PubMed]

J. Microsc. (1)

V. Bormuth, J. Howard, and E. Schäffer, "LED illumination for video-enhanced DIC imaging of single microtubules," J. Microsc. 226, 1-5 (2007).
[CrossRef] [PubMed]

Langmuir (1)

E. Schäffer, S. F. Nørrelykke, and J. Howard, "Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers," Langmuir 23, 3654-3665 (2007).
[CrossRef] [PubMed]

Microsc. Res. Tech. (1)

A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, "Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light," Microsc. Res. Tech. 44, 378-386 (1999).
[CrossRef] [PubMed]

Nature (2)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, "Direct observation of base-pair stepping by RNA polymerase," Nature 438, 460-465 (2005).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, "Intersubunit coordination in a homomeric ring ATPase," Nature 457, 446-450 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Opt. Express 16, 14,561-14,570 (2008).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

K. Neuman and S. Block, "Optical Trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, "Calibration of optical tweezers with positional detection in the back focal plane," Rev. Sci. Instrum. 77, 103,101 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic drawing of the optical tweezers apparatus. QPD-IF, quadrant photo-diode for intensity feedback; FI, Faraday isolator; λ/2, half-wave plate; SV, servo; BS, beam splitter; BD, beam dump; QPD-IM, quadrant photo-diode for intensity monitoring; PM, piezo mirror; PS, piezo translation stage; S, stage; PSD, position sensitive diode; LED, light emitting diode; HS, heat sink. The self-made inverted microscope (yellow) on the right-hand side is drawn as a side view, the remaining setup as a top view. (b) Schematic drawing of the temperature feedback. The red bands around the objectives indicate approximately the position and size of the heating foils.

Fig. 2.
Fig. 2.

Laser heating of the objective. Objective temperature deviation (oe-17-19-17190-i001) above the final, equilibrium temperature as a function of time. At time zero the shutter was closed. The relaxation was fitted by a double exponential decay (oe-17-19-17190-i002) that returned τo=190 s and τm=2600 s attributed to the objective and microscope, respectively. Guides to the eye (oe-17-19-17190-i003) indicate the fast and slow relaxation. Concurrently, the microscope temperature (oe-17-19-17190-i004) decreased slowly. The laser power was ≈1.4W at the back aperture of the objective, the starting temperature was 27.50 °C, and the final temperature was 26.58 °C. Inset: Objective temperature reached a 10 °C higher set point temperature after ≈10 s using the temperature feedback. Return to the previous set point was slower.

Fig. 3.
Fig. 3.

Stability of objective temperature and immobilized-microsphere position. (a) Power spectral density (PSD) of the objective temperature for the feedback oe-17-19-17190-i005 OFF, oe-17-19-17190-i006 ON with single-, oe-17-19-17190-i007 ON with double-heat-foil configuration. Inset: Deviation of the objective temperature from the mean as a function of time for the feedback. (b) PSD of the axial position for the three cases (oe-17-19-17190-i008 OFF, oe-17-19-17190-i009 ON with single-, oe-17-19-17190-i010 ON with double-heat-foil configuration). All PSD curves are an average of 8 spectra. Upper inset: Deviation of the axial position from the mean as a function of time. Lower inset: Integrated positional noise as a function of frequency. (c) Allan deviation of position with the double-heat-foil configuration and without temperature feedback. (d,e) Steps of an immobilized microsphere created by moving the piezo translation stage with Δx=0.18 nm in (d) and Δz=0.27 nm in (e). Data were acquired with a sampling frequency of 10 kHz and are displayed with 10 Hz (200 Hz, shaded colors) bandwidth obtained by adjacent averaging.

Fig. 4.
Fig. 4.

(a) Displacement response of microsphere position (oe-17-19-17190-i011 x, oe-17-19-17190-i012 y, and oe-17-19-17190-i013 z; left-hand axis) to 20mK steps of the temperature set point (step duration: ≈300 s; oe-17-19-17190-i014 objective temperature T, right-hand axis). Inset: Microsphere position (oe-17-19-17190-i015 x, oe-17-19-17190-i016 y, and oe-17-19-17190-i017 z) as a function of temperature deviation.

Fig. 5.
Fig. 5.

Response to shutter closure. Axial microsphere position (oe-17-19-17190-i017) and objective temperature deviation (oe-17-19-17190-i018) from the equilibrium/set point temperature with temperature feedback ON [(a) single- and (b) double-heating-foil configuration] and OFF (c). Grey boxes represent closure periods (5, 10, 20, 50, 100, 200, and 400 s; not all long closure events are shown). During closures there was no laser reaching the position detector. Therefore, the microsphere position could not be measured leading to discontinuities in the trace.

Metrics