Abstract

Bound OH- is one major unwanted absorbing impurity causing significant attenuation for certain wavelengths of laser radiation when propagating through fused silica. A wavelength tunable laser calorimeter (LCA) is used to detect dopants and other impurities in optical material. Also, a technique for photothermal absorption measurements is combined with the LCA set-up allowing for a lateral scan of the sample retaining an absolute calibration. Regarding inhomogeneities within the distribution of impurities the combination of both techniques provides a highly sensitive method to investigate in the lateral distribution of OH- content in fused silica.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
    [CrossRef]
  2. A. Efimov and V. Pogareva, "IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region," Chem. Geol. 229,198-217 (2006).
    [CrossRef]
  3. S. Gnster, D. Ristau, and S. Bosch-Puig, "Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films," Proc. of SPIE 4099,299-310 (2000).
    [CrossRef]
  4. U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
    [CrossRef]
  5. ISO 11551:2003 "Optics and optical instruments - Lasers and laser-related equipment - Test method for absorptance of optical laser components."
  6. P. A. Temple, "Experimental and theoretical considerations in thin-film laser calorimetry," Opt.Eng. 23,236-330 (1984).
  7. U. Willamowski, D. Ristau, and E. Welsch, "Measuring the absolute absorptance of optical laser components," Appl. Opt. 37,8362-8370 (1998).
    [CrossRef]
  8. B. C. Li, S. Martin, E. Welsch, "In situ measurement on ultraviolet dielectric components by a pulsed top-hat beam thermal lens," Appl. Opt. 39,4690-4397 (2000).
    [CrossRef]
  9. B. Li and E. Welsch, "Configuration optimization and sensitivity comparison among thermal lens, photothermal deflection, and interference detection techniques," Proc. of SPIE 3578594-603 (1999).
    [CrossRef]
  10. S. Yiou, F. O. Balembois, P. Georges, and A. Brun, "High-Power Continuous-Wave Diode-Pumped Nd:YAlO(3) Laser that Emits on Low-Gain 1378- and 1385-nm Transitions," Appl. Opt. 40,3019-3022 (2001).
    [CrossRef]
  11. B. Ruffing, A. Nebel, and R. Wallenstein, "High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range," Appl. Phys. B 72,137-149 (2001).
  12. D. B. Keck and A. R. Tynes, "Spectral Response of Low-Loss Optical Waveguides," Appl. Opt. 11,1502-1506 (1972).
    [CrossRef] [PubMed]
  13. P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
    [CrossRef]
  14. R. Clasen, "Optical impurity measurements on silica glasses prepared via the colloidal gel route," Glastech. Ber. 63,291-299 (1990).
  15. C. R. Elliott and G. R. Newns, "Near Infrared Absorption Spectra of Silica: OH Overtones," Appl. Spectrosc. 25,378-379 (1971).
    [CrossRef]
  16. Schott Glass Catalogue www.schott.com.

2006

A. Efimov and V. Pogareva, "IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region," Chem. Geol. 229,198-217 (2006).
[CrossRef]

2001

S. Yiou, F. O. Balembois, P. Georges, and A. Brun, "High-Power Continuous-Wave Diode-Pumped Nd:YAlO(3) Laser that Emits on Low-Gain 1378- and 1385-nm Transitions," Appl. Opt. 40,3019-3022 (2001).
[CrossRef]

B. Ruffing, A. Nebel, and R. Wallenstein, "High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range," Appl. Phys. B 72,137-149 (2001).

2000

S. Gnster, D. Ristau, and S. Bosch-Puig, "Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films," Proc. of SPIE 4099,299-310 (2000).
[CrossRef]

B. C. Li, S. Martin, E. Welsch, "In situ measurement on ultraviolet dielectric components by a pulsed top-hat beam thermal lens," Appl. Opt. 39,4690-4397 (2000).
[CrossRef]

1999

B. Li and E. Welsch, "Configuration optimization and sensitivity comparison among thermal lens, photothermal deflection, and interference detection techniques," Proc. of SPIE 3578594-603 (1999).
[CrossRef]

1998

1996

O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
[CrossRef]

U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
[CrossRef]

1990

R. Clasen, "Optical impurity measurements on silica glasses prepared via the colloidal gel route," Glastech. Ber. 63,291-299 (1990).

1984

P. A. Temple, "Experimental and theoretical considerations in thin-film laser calorimetry," Opt.Eng. 23,236-330 (1984).

1973

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

1972

1971

Astle, H. W.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Balembois, F. O.

Bosch-Puig, S.

S. Gnster, D. Ristau, and S. Bosch-Puig, "Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films," Proc. of SPIE 4099,299-310 (2000).
[CrossRef]

Brun, A.

Cherin, A. H.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Clasen, R.

R. Clasen, "Optical impurity measurements on silica glasses prepared via the colloidal gel route," Glastech. Ber. 63,291-299 (1990).

Efimov, A.

A. Efimov and V. Pogareva, "IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region," Chem. Geol. 229,198-217 (2006).
[CrossRef]

Elliott, C. R.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
[CrossRef]

French, W.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Georges, P.

Gnster, S.

S. Gnster, D. Ristau, and S. Bosch-Puig, "Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films," Proc. of SPIE 4099,299-310 (2000).
[CrossRef]

Gro, T.

U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
[CrossRef]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
[CrossRef]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
[CrossRef]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
[CrossRef]

Jaeger, R. E.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Kaiser, P.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Keck, D. B.

Li, B.

B. Li and E. Welsch, "Configuration optimization and sensitivity comparison among thermal lens, photothermal deflection, and interference detection techniques," Proc. of SPIE 3578594-603 (1999).
[CrossRef]

Li, B. C.

Martin, S.

Nebel, A.

B. Ruffing, A. Nebel, and R. Wallenstein, "High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range," Appl. Phys. B 72,137-149 (2001).

Newns, G. R.

Pearson, W.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Pogareva, V.

A. Efimov and V. Pogareva, "IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region," Chem. Geol. 229,198-217 (2006).
[CrossRef]

Ristau, D.

S. Gnster, D. Ristau, and S. Bosch-Puig, "Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films," Proc. of SPIE 4099,299-310 (2000).
[CrossRef]

U. Willamowski, D. Ristau, and E. Welsch, "Measuring the absolute absorptance of optical laser components," Appl. Opt. 37,8362-8370 (1998).
[CrossRef]

U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
[CrossRef]

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, "High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range," Appl. Phys. B 72,137-149 (2001).

Temple, P. A.

P. A. Temple, "Experimental and theoretical considerations in thin-film laser calorimetry," Opt.Eng. 23,236-330 (1984).

Tynes, A. R.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

D. B. Keck and A. R. Tynes, "Spectral Response of Low-Loss Optical Waveguides," Appl. Opt. 11,1502-1506 (1972).
[CrossRef] [PubMed]

Wallenstein, R.

B. Ruffing, A. Nebel, and R. Wallenstein, "High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range," Appl. Phys. B 72,137-149 (2001).

Welling, H.

U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
[CrossRef]

Welsch, E.

Willamowski, U.

U. Willamowski, D. Ristau, and E. Welsch, "Measuring the absolute absorptance of optical laser components," Appl. Opt. 37,8362-8370 (1998).
[CrossRef]

U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
[CrossRef]

Yiou, S.

Appl. Opt.

Appl. Phys. B

B. Ruffing, A. Nebel, and R. Wallenstein, "High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range," Appl. Phys. B 72,137-149 (2001).

Appl. Spectrosc.

Chem. Geol.

A. Efimov and V. Pogareva, "IR absorption spectra of vitreous silica and silicate glasses: The nature of bands in the 1300 to 5000 cm-1 region," Chem. Geol. 229,198-217 (2006).
[CrossRef]

Glastech. Ber.

R. Clasen, "Optical impurity measurements on silica glasses prepared via the colloidal gel route," Glastech. Ber. 63,291-299 (1990).

J. Non-Cryst. Solids

O. Humbach, H. Fabian, U. Grzesik, and W. Heitmann, "Analysis of OH absorption bands in synthetic silica" J. Non-Cryst. Solids 203,19-26 (1996).
[CrossRef]

J.Opt. Soc. Am.

P. Kaiser, A. R. Tynes, H. W. Astle, W. Pearson, W. French, R. E. Jaeger, and A. H. Cherin, "Spectral losses of unclad vitreous silica and soda-lime-silicate fibers," J.Opt. Soc. Am. 63,1141-1148 (1973).
[CrossRef]

Opt.Eng.

P. A. Temple, "Experimental and theoretical considerations in thin-film laser calorimetry," Opt.Eng. 23,236-330 (1984).

Proc. of SPIE

B. Li and E. Welsch, "Configuration optimization and sensitivity comparison among thermal lens, photothermal deflection, and interference detection techniques," Proc. of SPIE 3578594-603 (1999).
[CrossRef]

S. Gnster, D. Ristau, and S. Bosch-Puig, "Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films," Proc. of SPIE 4099,299-310 (2000).
[CrossRef]

U. Willamowski, T. Gro, D. Ristau, and H. Welling, "Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO 11551," Proc. of SPIE 2870,483-494 (1996).
[CrossRef]

Other

ISO 11551:2003 "Optics and optical instruments - Lasers and laser-related equipment - Test method for absorptance of optical laser components."

Schott Glass Catalogue www.schott.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Combined laser calorimetric and thermal lens technique (PTL) set-up

Fig. 2.
Fig. 2.

Results of the PTL measurement on a fused silica sample.

Fig. 3.
Fig. 3.

Temperature curve of a LCA measurement for determination of OH- content.

Fig. 4.
Fig. 4.

Radial scan of the laser-induced absorption.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

COH = 1d·αeff · log (1A),

Metrics