Abstract

130-W average-power picosecond green laser pulses at 514.5 nm are generated from a frequency-doubled hybrid cryogenic Yb:YAG laser. A second-harmonic conversion efficiency of 54% is achieved with a 15-mm-long noncritically phase-matched lithium triborate (LBO) crystal from a 240-W 8-ps 78-MHz pulse train at 1029 nm. The high-average-power hybrid laser system consists of a picosecond fiber chirped-pulse amplification seed source and a cryogenically-cooled double-pass Yb:YAG amplifier. The M2 value of 2.7, measured at 77 W of second-harmonic power, demonstrates a good focusing quality. A thermal analysis shows that the longitudinal temperature gradient can be the main limiting factor in the second-harmonic efficiency. To our best knowledge, this is the highest-average-power green laser source generating picosecond pulses.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Chang, E. P. Dragon, and I. L. Bass, “315-W pulsed-green generation with a diode-pumped Nd:YAG laser,” Conference on Lasers and Electro-Optics 1998 Technical Digests (Optical Society of America, Washington, D.C., 1998) CPD2.
  2. J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire,” Opt. Lett. 20(1), 64–66 (1995).
    [CrossRef] [PubMed]
  3. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, “Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser,” Opt. Lett. 23(17), 1384–1386 (1998).
    [CrossRef]
  4. K.-H. Hong, S. Kostritsa, T. J. Yu, J. H. Sung, I. W. Choi, Y.-C. Noh, D.-K. Ko, and J. Lee, “100-kHz high-power femtosecond Ti:sapphire laser based on downchirped regenerative amplification,” Opt. Express 14(2), 970–978 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-970 .
    [CrossRef] [PubMed]
  5. S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser,” Opt. Lett. 25(2), 105–107 (2000).
    [CrossRef]
  6. Q. Liu, X. Yan, M. Gong, X. Fu, and D. Wang, “103 W high beam quality green laser with an extra- cavity second harmonic generation,” Opt. Express 16(19), 14335–14340 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14335 .
    [CrossRef] [PubMed]
  7. D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Optics and Photonics News 20(5), 36–41 (2009).
    [CrossRef]
  8. P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richard, and J. Nilsson, “80 W green laser based on a frequency-doubled picosecond, single-mode, linearly-polarized fiber laser,” Conference on Lasers and Electro-Optics 2006 Technical Digests (Optical Society of America, Washington, D.C., 2006) CThJ1.
  9. L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
    [CrossRef] [PubMed]
  10. R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
    [CrossRef]
  11. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).
  12. K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
    [CrossRef] [PubMed]
  13. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, Th. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 microm,” Opt. Lett. 31(8), 1103–1105 (2006).
    [CrossRef] [PubMed]
  14. J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
    [CrossRef] [PubMed]
  15. Available on the website of relevant nonlinear crystal companies, such as CASIX and Red Optronics.
  16. http://www.sandia.gov/imrl/XWEB1128/xxtal.htm
  17. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
    [CrossRef]
  18. V. G. Dmitriev, V. A. Konovalov, and E. A. Shalaev, “Theory of thermal self-action in second-harmonic generation in nonlinear crystals,” Sov. J. Quantum Electron. 5(3), 282–285 (1975).
    [CrossRef]
  19. S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystals for high average power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997).
    [CrossRef]
  20. M. River, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics 2009 Technical Digests (Optical Society of America, Washington, D.C., 2009) CMBB2.

2009

D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Optics and Photonics News 20(5), 36–41 (2009).
[CrossRef]

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
[CrossRef] [PubMed]

2008

2007

L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
[CrossRef] [PubMed]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

2006

2000

1998

1997

S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystals for high average power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997).
[CrossRef]

1995

1994

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

1975

V. G. Dmitriev, V. A. Konovalov, and E. A. Shalaev, “Theory of thermal self-action in second-harmonic generation in nonlinear crystals,” Sov. J. Quantum Electron. 5(3), 282–285 (1975).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Baltuska, A.

Benedick, A.

Bo, Y.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Bolger, J. A.

Brown, D. C.

D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Optics and Photonics News 20(5), 36–41 (2009).
[CrossRef]

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Choi, I. W.

Cui, D.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Cui, Q.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Dergachev, A.

Dmitriev, V. G.

V. G. Dmitriev, V. A. Konovalov, and E. A. Shalaev, “Theory of thermal self-action in second-harmonic generation in nonlinear crystals,” Sov. J. Quantum Electron. 5(3), 282–285 (1975).
[CrossRef]

Eggleton, B. J.

Falcão-Filho, E. L.

Fan, T. Y.

Forget, N.

Fu, X.

Fuji, T.

Fujikawa, S.

Galvanauskas, A.

Gong, M.

Gopinath, J.

Gu, X.

Guo, L.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Hong, K.-H.

Huang, C.-P.

Huang, S.-W.

Hybl, J.

Ilday, F. Ö.

Ishii, N.

Kaplan, D.

Kapteyn, H. C.

Kärtner, F. X.

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

Ko, D.-K.

Kojima, T.

Konno, S.

Konovalov, V. A.

V. G. Dmitriev, V. A. Konovalov, and E. A. Shalaev, “Theory of thermal self-action in second-harmonic generation in nonlinear crystals,” Sov. J. Quantum Electron. 5(3), 282–285 (1975).
[CrossRef]

Kostritsa, S.

Krausz, F.

Kuper, J. W.

D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Optics and Photonics News 20(5), 36–41 (2009).
[CrossRef]

Kuramoto, Y.

Lee, J.

Li, F.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Liu, Q.

Mann, G.

S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystals for high average power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997).
[CrossRef]

McDonagh, L.

Metzger, Th.

Moses, J.

Mücke, O. D.

Murnane, M. M.

Nabekawa, Y.

Nebel, A.

Noh, Y.-C.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Peng, Q.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Peng, R.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Seidel, S.

S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystals for high average power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997).
[CrossRef]

Sekikawa, T.

Shalaev, E. A.

V. G. Dmitriev, V. A. Konovalov, and E. A. Shalaev, “Theory of thermal self-action in second-harmonic generation in nonlinear crystals,” Sov. J. Quantum Electron. 5(3), 282–285 (1975).
[CrossRef]

Siddiqui, A.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Sung, J. H.

Tang, L.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Teisset, C. Y.

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Togashi, T.

Wallenstein, R.

Wang, D.

Watanabe, S.

Xu, Z.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Yan, X.

Yasui, K.

Yu, T. J.

Zhang, X.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Zhou, J.

IEEE J. Quantum Electron.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30(12), 2950–2952 (1994).
[CrossRef]

IEEE JST-QE

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-Doped Solid-Stae Lasers,” IEEE JST-QE 13, 448 (2007).

Opt. Commun.

R. Peng, L. Guo, X. Zhang, F. Li, Q. Cui, Y. Bo, Q. Peng, D. Cui, Z. Xu, and L. Tang, “43W picosecond laser and second-harmonic generation,” Opt. Commun. 282(4), 611–613 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F. Ö. Ilday, T. Y. Fan, and F. X. Kärtner, “Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system,” Opt. Lett. 33(21), 2473–2475 (2008).
[CrossRef] [PubMed]

J. Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A. Dergachev, J. A. Bolger, B. J. Eggleton, and F. X. Kärtner, “Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression,” Opt. Lett. 34(11), 1639–1641 (2009).
[CrossRef] [PubMed]

T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, Th. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 microm,” Opt. Lett. 31(8), 1103–1105 (2006).
[CrossRef] [PubMed]

L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
[CrossRef] [PubMed]

S. Konno, T. Kojima, S. Fujikawa, and K. Yasui, “High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser,” Opt. Lett. 25(2), 105–107 (2000).
[CrossRef]

J. Zhou, C.-P. Huang, M. M. Murnane, and H. C. Kapteyn, “Amplification of 26-fs, 2-TW pulses near the gain-narrowing limit in Ti:sapphire,” Opt. Lett. 20(1), 64–66 (1995).
[CrossRef] [PubMed]

Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, “Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser,” Opt. Lett. 23(17), 1384–1386 (1998).
[CrossRef]

Optics and Photonics News

D. C. Brown and J. W. Kuper, “Solid-state lasers: steady progress through the decades,” Optics and Photonics News 20(5), 36–41 (2009).
[CrossRef]

Proc. SPIE

S. Seidel and G. Mann, “Numerical modeling of thermal effects in nonlinear crystals for high average power second harmonic generation,” Proc. SPIE 2989, 204–214 (1997).
[CrossRef]

Sov. J. Quantum Electron.

V. G. Dmitriev, V. A. Konovalov, and E. A. Shalaev, “Theory of thermal self-action in second-harmonic generation in nonlinear crystals,” Sov. J. Quantum Electron. 5(3), 282–285 (1975).
[CrossRef]

Other

Available on the website of relevant nonlinear crystal companies, such as CASIX and Red Optronics.

http://www.sandia.gov/imrl/XWEB1128/xxtal.htm

P. Dupriez, J. K. Sahu, A. Malinowski, Y. Jeong, D. J. Richard, and J. Nilsson, “80 W green laser based on a frequency-doubled picosecond, single-mode, linearly-polarized fiber laser,” Conference on Lasers and Electro-Optics 2006 Technical Digests (Optical Society of America, Washington, D.C., 2006) CThJ1.

J. J. Chang, E. P. Dragon, and I. L. Bass, “315-W pulsed-green generation with a diode-pumped Nd:YAG laser,” Conference on Lasers and Electro-Optics 1998 Technical Digests (Optical Society of America, Washington, D.C., 1998) CPD2.

M. River, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics 2009 Technical Digests (Optical Society of America, Washington, D.C., 2009) CMBB2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

High-average-power hybrid cryogenic Yb:YAG laser system seeded by a fiber CPA chain based on CVBG stretcher and compressor. CVBG, chirped volume Bragg grating; DM, dichroic mirror; CM, curved mirror; L1-L3, lenses; λ/4, quarter waveplate; TFP, thin film polarizer; LN2, liquid nitrogen.

Fig. 2
Fig. 2

Phase matching characteristics of a 15-mm-long LBO crystal. Calculated SHG efficiencies as a function of input wavelength (a) and temperature tuning (b), respectively, and comparison with the experimentally measured temperature tuning curve (c), where the red squares show the measurement.

Fig. 3
Fig. 3

Experimental setup of SHG from high-average-power picosecond cryogenic hybrid Yb:YAG laser. L1-L2, lenses; DM, dichroic mirror for high-reflectivity at green beam; W, wedge; T1-T2, translators.

Fig. 4
Fig. 4

High-average-power SHG using a 15-mm-long type I LBO crystal. The average power (a) and the conversion efficiency (b) vs. IR power at 1029 nm.

Fig. 5
Fig. 5

Longitudinal thermal increase at r=0 inside LBO crystal vs. IR power. The left circle represents the crossing point between phase matching bandwidth (full width at 90% maximum) and temperature increase and the right one shows the temperature tuning limit set by the phase matching bandwidth.

Fig. 6
Fig. 6

Spatial beam profiles of high-power green beam at the focus (a) and in the far field (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(r,z)T(r0)={(PP2ω(z))ηω+2P2ω(z)η2ω4πκ(1r2w22ln(wr0)),r<w(PP2ω(z))ηω+2P2ω(z)η2ω2πκln(rr0),rw

Metrics