Abstract

We report experimental results demonstrating the variation of optical signal-to-noise ratio (OSNR) of laser lines in Brillouin-Raman fiber laser against Raman pump power (RPP) variation. The reduction of OSNR is attributed to the spectral broadening of laser lines depending on the RPP. The spectral broadening is owing to the effect of the interaction between laser lines and turbulent waves (nonlinear interaction between longitudinal cavity modes).In our experiment, the worst OSNR is obtained at 650 mW RPP as a result of maximum spectral broadening when the Brillouin pump wavelength is fixed at 1555 nm. On the other hand, the OSNR improvement is obtained for RPP beyond 650 mW due to the effect of red-shift, the Raman peak gain is shifted away from the laser lines generated around 1555 nm thus reduces the spectral broadening effect.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21(16), 1250–1252 (1996).
    [CrossRef] [PubMed]
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., (Academic Press, New York, 2006).
  3. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
    [CrossRef]
  4. K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
    [CrossRef]
  5. K. D. Park, H. Ryu, W. K. Lee, S. K. Kim, H. S. Moon, and H. S. Suh, “Threshold features of a Brillouin Stokes comb generated in a distributed fiber Raman amplifier,” Opt. Lett. 28(15), 1311–1313 (2003).
    [CrossRef] [PubMed]
  6. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett. 31(7), 918–920 (2006).
    [CrossRef] [PubMed]
  7. J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
    [CrossRef]
  8. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Spectral broadening in Raman fiber lasers,” Opt. Lett. 31(20), 3007–3009 (2006).
    [CrossRef] [PubMed]
  9. J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
    [CrossRef]
  10. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixng-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
    [CrossRef]
  11. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
    [CrossRef]
  12. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [CrossRef] [PubMed]
  13. G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
    [CrossRef]
  14. Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
    [CrossRef]
  15. A. E. Siegmen, Lasers, (University Science Books, California, 1986).

2008 (2)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

2007 (2)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixng-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[CrossRef]

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

2006 (2)

2003 (2)

2002 (2)

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef]

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

1996 (2)

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21(16), 1250–1252 (1996).
[CrossRef] [PubMed]

Ahmad, A.

Ania-Castanon, J. D.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Babin, S. A.

Bouteiller, J. C.

J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

Cai, Z. P.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

Chang, J. S.

Chardon, A.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

Churkin, D. V.

Cowle, G. J.

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21(16), 1250–1252 (1996).
[CrossRef] [PubMed]

Engelbrecht, R.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

Feron, P.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

Hagen, J.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

Harper, P.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Ismagulov, A. E.

Kablukov, S. I.

Karalekas, V.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Kim, P.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

Kim, S. K.

Lee, J. H.

Lee, W. K.

Mahdi, M. A.

Md Ali, M. I.

Mezentsev, V. K.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Min, B.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

Mohamad, R.

Moon, H. S.

Park, K. D.

Park, N.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

Podivilov, E. V.

Ryu, H.

Schmauss, B.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

Siekiera, A.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

Stepanov, D. Y.

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21(16), 1250–1252 (1996).
[CrossRef] [PubMed]

Stephan, G. M.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

Suh, H. S.

Turitsyn, S. K.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Welzel, O.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

Xu, H. Y.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

Zamzuri, A. K.

IEEE Photon. Technol. Lett. (4)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

J. C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, “Numerical modeling of intracavity spectral broadening of Raman fiber lasers,” IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007).
[CrossRef]

G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:Sapphire laser,” Opt. Commun. 203(3-6), 301–313 (2002).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. A (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castanon, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Other (2)

A. E. Siegmen, Lasers, (University Science Books, California, 1986).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., (Academic Press, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set-up of BRFL to investigate the OSNR performance of Brillouin Stokes lines.

Fig. 2
Fig. 2

(a) The evolution of output spectrum with the RPP variation, the magnified view of laser lines are displayed at different RPP of (b) 350 mW and 650 mW, and (c) 650 mW and 900 mW.

Fig. 3
Fig. 3

Measured output spectra of the laser line (BP) at 1555 nm for different RPP values, the OSA resolution bandwidth is 0.015 nm.

Fig. 4
Fig. 4

Measured OSNR value of the first-order Brillouin Stokes line for different BP wavelengths, the OSA resolution bandwidth is 0.015 nm.

Fig. 5
Fig. 5

Measured output spectra of the self-lasing cavity modes from the BRFL without BP injection, the resolution bandwidth is 0.1 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=λ(1nnT+1ddT)ΔT.

Metrics