Abstract

A new magnetometry method based on electromagnetic induced transparency (EIT) with maximally polarized states is demonstrated. An EIT hyperfine resonance, comprising the mF=F state (end-state), is observed at a non-zero angle between the laser beam and the magnetic field. The method takes advantage of the process of end-state pumping, a well-known rival of simpler EIT magnetometry schemes, and therefore benefits at a high laser power. An experimental demonstration and a numerical analysis of the magnetometry method are presented. The analysis points on a clear sensitivity advantage of the end-state EIT magnetometer.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
    [CrossRef]
  2. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
    [CrossRef]
  3. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
    [CrossRef]
  4. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
    [CrossRef] [PubMed]
  5. P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Inst. 76(12), 126103 (pages 4) (2005). http://link.aip.org/link/?RSINAK/76/126103/1 .
  6. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer,” App. Phys. Lett. 85(26), 6409–6411 (2004). http://link.aip.org/link/?APL/85/6409/1 .
  7. H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
    [CrossRef]
  8. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, and L. Moi, “Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment,” J. Opt. Soc. Am. B 24(9), 2357–2362 (2007), http://josab.osa.org/abstract.cfm?URI=josab-24-9-2357 .
    [CrossRef]
  9. E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Progress in Optics, vol. 35 (Elsevier, Amsterdam, 1996).
  10. Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
    [CrossRef] [PubMed]
  11. J. Vanier, M. W. Levine, D. Janssen, and M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (pages 4) (2003). http://link.aps.org/doi/10.1103/PhysRevA.67.065801 .
  12. M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, “Ramsey-like measurement of the decoherence rate between Zeeman sublevels,” Phys. Rev. A 78(6), 063818 (pages 7) (2008). http://link.aps.org/abstract/PRA/v78/e063818 .

2007 (2)

2004 (1)

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

2002 (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

2000 (1)

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

1998 (1)

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Belfi, J.

Bevilacqua, G.

Biancalana, V.

Braun, A. M.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Budker, D.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
[CrossRef]

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Cartaleva, S.

Dancheva, Y.

Fleischhauer, M.

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Gawlik, W.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

Happer, W.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Jau, Y.-Y.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Kimball, D. F.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Kuzma, N. N.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Lee, H.

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Moi, L.

Post, A. B.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Rochester, S. M.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
[CrossRef]

Romalis, M. V.

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Scully, M. O.

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Weis, A.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

Yashchuk, V. V.

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

Zolotorev, M.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007), http://dx.doi.org/10.1038/nphys566 .
[CrossRef]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422(6932), 596–599 (2003), http://dx.doi.org/10.1038/nature01484 .
[CrossRef] [PubMed]

Phys. Rev. A (2)

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, “Sensitive magnetometry based on nonlinear magneto-optical rotation,” Phys. Rev. A 62(4), 043403 (2000), http://link.aps.org/doi/10.1103/PhysRevA.62.043403 .
[CrossRef]

H. Lee, M. Fleischhauer, and M. O. Scully, “Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence,” Phys. Rev. A 58(3), 2587–2595 (1998), http://link.aps.org/doi/10.1103/PhysRevA.58.2587 .
[CrossRef]

Phys. Rev. Lett. (1)

Y.-Y. Jau, A. B. Post, N. N. Kuzma, A. M. Braun, M. V. Romalis, and W. Happer, “Intense, narrow atomic-clock resonances,” Phys. Rev. Lett. 92(11), 110801 (2004), http://link.aps.org/doi/10.1103/PhysRevLett.92.110801 .
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, “Resonant nonlinear magneto-optical effects in atoms,” Rev. Mod. Phys. 74(4), 1153–1201 (2002), http://link.aps.org/doi/10.1103/RevModPhys.74.1153 .
[CrossRef]

Other (5)

P. D. D. Schwindt, L. Hollberg, and J. Kitching, “Self-oscillating rubidium magnetometer using nonlinear magneto-optical rotation,” Rev. Sci. Inst. 76(12), 126103 (pages 4) (2005). http://link.aip.org/link/?RSINAK/76/126103/1 .

P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer,” App. Phys. Lett. 85(26), 6409–6411 (2004). http://link.aip.org/link/?APL/85/6409/1 .

E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Progress in Optics, vol. 35 (Elsevier, Amsterdam, 1996).

J. Vanier, M. W. Levine, D. Janssen, and M. Delaney, “Contrast and linewidth of the coherent population trapping transmission hyperfine resonance line in 87Rb: Effect of optical pumping,” Phys. Rev. A 67(6), 065801 (pages 4) (2003). http://link.aps.org/doi/10.1103/PhysRevA.67.065801 .

M. Shuker, O. Firstenberg, Y. Sagi, A. Ben-kish, N. Davidson, and A. Ron, “Ramsey-like measurement of the decoherence rate between Zeeman sublevels,” Phys. Rev. A 78(6), 063818 (pages 7) (2008). http://link.aps.org/abstract/PRA/v78/e063818 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Level scheme of the D1 transition in 87Rb. The blue arrows represent the (0,0) resonance (the so-called clock resonance), the dashed arrows represent the ( + 1, + 1) resonance, and the red arrows represent the ( + 1, + 2) resonance. (b) The experimental system (see description in text).

Fig. 2
Fig. 2

Frequency scan of the RF modulation in 6 experiments (full lines) and the corresponding simulations (dashed lines). f0 is the frequency of the clock transition. The EIT lines, from left to right, are the (0,0) clock line, (0, + 1) line, ( + 1, + 1) line, and ( + 1, + 2) line. The angle between the magnetic field and beam is 0 (blue), 5, 15, 25, 34 and 40 (brown) degrees. Inset: The ratio between the frequency of the EIT lines and ωZeeman(+1,+1) .

Fig. 3
Fig. 3

(a) and (b), calculated FOM versus the logarithmic scale of laser power (in terms of power broadening in KHZ units) and the angular deviation of the magnetic field for (a) the ( + 1, + 1) resonance and (b) the ( + 1, + 2) resonance. The ratio between the maximal values is about 2. (c) The ratio between the ( + 1, + 2) FOM and the ( + 1, + 1) FOM versus the angular deviation at the experimental conditions. Note that the measurements were done at a laser power slightly higher than the optimal for the ( + 1, + 1) scheme, thus the maximum of 3.5 instead of 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E=E(isinθ2π^+1+cosθ2σ++1+cosθ2σ),
σ^+=x^iy^2       ;       σ^=x^+iy^2     ;     π^=iz^.
ddtρ=ih[H,ρ]+Lρ,
FOM=δf[KHz/mG]ContrastFWHM[KHz].
FOM=δf[d(Imχ)dΔ]|Δ=0.

Metrics