Abstract

In this work the impedance of separate-absorption-charge-multiplication Ge/Si avalanche photodiodes (APD) is characterized over a large range of bias voltage. An equivalent circuit with an inductive element is presented for modeling the Ge/Si APD. All the parameters for the elements included in the equivalent circuit are extracted by fitting the measured S22 with the genetic algorithm optimization. Due to a resonance in the avalanche region, the frequency response of the APD has a peak enhancement when the bias voltage is relatively high, which is observed in the measurement and agrees with the theoretical calculation shown in this paper.

© 2009 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840GHz gain-bandwidth-product

Wissem Sfar Zaoui, Hui-Wen Chen, John E. Bowers, Yimin Kang, Mike Morse, Mario J. Paniccia, Alexandre Pauchard, and Joe C. Campbell
Opt. Express 17(15) 12641-12649 (2009)

High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes

Nicholas J. D. Martinez, Christopher T. Derose, Reinhard W. Brock, Andrew L. Starbuck, Andrew T. Pomerene, Anthony L. Lentine, Douglas C. Trotter, and Paul S. Davids
Opt. Express 24(17) 19072-19081 (2016)

Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode

Nicholas J. D. Martinez, Michael Gehl, Christopher T. Derose, Andrew L. Starbuck, Andrew T. Pomerene, Anthony L. Lentine, Douglas C. Trotter, and Paul S. Davids
Opt. Express 25(14) 16130-16139 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
    [Crossref]
  2. A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
    [Crossref]
  3. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
    [Crossref]
  4. S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
    [Crossref]
  5. S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
    [Crossref]
  6. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Origin of the gain-bandwidth-product enhancement in separate-absorption-charge-multiplication Ge/Si avalan-che photodiodes,” Optical fiber communication (OFC) (San Diego, CA, 2009).
  7. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
    [Crossref] [PubMed]
  8. G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
    [Crossref]
  9. J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
    [Crossref]
  10. M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
    [Crossref]
  11. G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
    [Crossref]
  12. S. M. Sze, Physics of Semiconductor Devices, (New York: Wiley, 1981) Chap. 5.
  13. Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
    [Crossref]
  14. A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
    [Crossref]

2009 (1)

2008 (2)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

2007 (2)

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[Crossref]

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[Crossref]

2006 (1)

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[Crossref]

2005 (1)

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[Crossref]

2003 (1)

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[Crossref]

2002 (1)

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

1997 (1)

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

1988 (1)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

1978 (1)

Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
[Crossref]

Abraham, P.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

Baek, J. H.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[Crossref]

Banoushi, A.

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[Crossref]

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Bowers, J. E.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

Campbell, J. C.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Chen, H.-W.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Chen, P.-S.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[Crossref]

Choi, W.-Y.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

Chu, J. O.

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[Crossref]

Dehlinger, G.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[Crossref]

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[Crossref]

Doany, F. E.

Hanawa, I.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

Hawkins, A. R.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

John, R. A.

Johnson, B. C.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Kang, H.-S.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

Kang, Y.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Kardan, M. R.

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[Crossref]

Kim, G.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[Crossref]

Kim, I. G.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[Crossref]

Kobayashi, M.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

Koester, S. J.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[Crossref]

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[Crossref]

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Kwon, O. K.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[Crossref]

Lee, M.-J.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

Li, Z.-R.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[Crossref]

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Morse, M.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Naeini, M. A.

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[Crossref]

Paniccia, M. J.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Pauchard, A.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Qua, G. J.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Sato, K.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

Schares, L.

Schaub, J. D.

S. J. Koester, C. L. Schow, L. Schares, G. Dehlinger, J. D. Schaub, F. E. Doany, and R. A. John, “Ge-on-SOI-detector/Si-CMOS-amplifier receivers for high-performance optical-communication applications,” J. Lightwave Technol. 25(1), 46–57 (2007).
[Crossref]

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[Crossref]

Schow, C. L.

Shi, J.-W.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[Crossref]

Streubel, K.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

Tokumitsu, T.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

Tsang, W. T.

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

Wang, G.

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

Wang, Y.-C.

Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
[Crossref]

Wu, W.

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

Wu, Y.-S.

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[Crossref]

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Zaoui, W. S.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009).
[Crossref] [PubMed]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Appl. Phys. Lett. (2)

A. R. Hawkins, W. Wu, P. Abraham, K. Streubel, and J. E. Bowers, “High gain-bandwidth-product silicon heterointerface photodetector,” Appl. Phys. Lett. 70(3), 303–305 (1997).
[Crossref]

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[Crossref]

IEEE Electron Device Lett. (1)

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent Circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP /InGaAsP /InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Koester, J. D. Schaub, G. Dehlinger, and J. O. Chu, “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1489–1502 (2006).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

G. Wang, T. Tokumitsu, I. Hanawa, K. Sato, and M. Kobayashi, “Analysis of high speed p-i-n photodiodes s-parameters by a novel small-signal equivalent circuit model,” IEEE Microw. Wirel. Compon. Lett. 12(10), 378–380 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J.-W. Shi, Y.-S. Wu, Z.-R. Li, and P.-S. Chen, “Impact-ionization-induced bandwidth enhance-ment of a Si–SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic Ge/Si Avalanche Photodiodes with 340GHz Gain-Bandwidth Product,” Nat. Photonics 3(1), 59–63 (2008).
[Crossref]

Opt. Express (1)

Solid-State Electron. (2)

Y.-C. Wang, “Small-signal characteristics of a Read diode under conditions of field-dependent velocity and finite reverse saturation current,” Solid-State Electron. 21(4), 609–615 (1978).
[Crossref]

A. Banoushi, M. R. Kardan, and M. A. Naeini, “A circuit model simulation for separate absorption, grading, charge, and multiplication avalanche photodiodes,” Solid-State Electron. 49(6), 871–877 (2005).
[Crossref]

Other (2)

S. M. Sze, Physics of Semiconductor Devices, (New York: Wiley, 1981) Chap. 5.

W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Origin of the gain-bandwidth-product enhancement in separate-absorption-charge-multiplication Ge/Si avalan-che photodiodes,” Optical fiber communication (OFC) (San Diego, CA, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic configuration of the Ge/Si SACM APD device; (b) the parameters for the layers.

Fig. 2
Fig. 2

Measured frequency responses at different bias voltages for SACM APDs with diameters D = 150μm (a), D = 80μm (b), and D = 50μm (c). The input optical power is –14dBm and the operating temperature is 25°C.

Fig. 3
Fig. 3

Comparison between the bandwidths for the SACM APDs with diameters D = 150μm, 80μm, and 50μm. The input optical power P = –14dBm and the operating temperature T = 25°C.

Fig. 4
Fig. 4

The dark currents of the presented SACM APDs with diameters of D = 150μm, 80μm and 50μm. The operational temperature is 25°C.

Fig. 5
Fig. 5

Measured S22 at different bias voltages for SACM APDs with diameters of D = 150μm (a), D = 80μm (b), and D = 50μm (c). The input optical power is –14dBm and the operational temperature is 25°C.

Fig. 6
Fig. 6

The measured impedance at different bias voltages for the present SACM APD with a diameter of D = 80μm. The input optical power is –14dBm and the operation temperature is 25°C. (a) The real part Zr of the impedance. (b) The imaginary part Zi of the impedance.

Fig. 7
Fig. 7

The equivalent circuit of the SACM APD.

Fig. 8
Fig. 8

The measured and fitted reflection coefficients of GeSi APD under –14dBm optical illumination (a) Vbias = –26.6V; (b) Vbias = –26.4V; (c) Vbias = –26.2V; (d) Vbias = –26.0V. The temperature is 25 °C.

Fig. 9
Fig. 9

The measured and calculated frequency responses when the input optical power P = –14dBm for (a) Vbias = –26.6V; (b) Vbias = –26.4V; (c) Vbias = –26.2V; (d) Vbias = –26.0V.

Tables (3)

Tables Icon

Table 1 The fitted parameters at P = –14dBm.

Tables Icon

Table 2 The fitted parameters at P = –20dBm.

Tables Icon

Table 3 The fitted parameters for calculation of the frequency response.

Metrics