Abstract

A new approach for self-mixing interference in fiber ring laser and its application to vibration measurement is presented. Fourier transform method is proposed to improve the measurement accuracy of such an active sensing, in which the basic frequency of self-mixing interference signal is used to determine the frequency of vibration, and the stop order of the harmonic components is proportional to the amplitude of vibration. We have demonstrated this system to measure the microscopic vibration of a remote target. Some errors due to this method are discussed. The maximum error of the amplitude is about λ/10 and the maximum error of the frequency is about 10%, showing a good agreement with the simulative results.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25(9), 1417–1419 (1986).
    [CrossRef] [PubMed]
  2. G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
    [CrossRef]
  3. M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1(7), 723–726 (1968).
    [CrossRef]
  4. M. K. Koelink, M. Slot, F. F. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler velocimeter based on the self-mixing effect in a fiber-coupled semiconductor laser: theory,” Appl. Opt. 31(18), 3401–3408 (1992).
    [CrossRef] [PubMed]
  5. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
    [CrossRef]
  6. L. Scalise and N. Paone, “Laser Doppler vibrometry based on self-mixing effect,” Opt. Lasers Eng. 38(3-4), 1173–1184 (2002).
    [CrossRef]
  7. F. F. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
    [CrossRef] [PubMed]
  8. Y. Zhao, M. Wang, J. Zhou, and X. Dai; “Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel,” IEEE Photon. Technol. Lett. 21(13), 863–865 (2009).
    [CrossRef]
  9. D. Guo, M. Wang, and S. Tan, “Self-mixing interferometer based on sinusoidal phase modulating technique,” Opt. Express 13(5), 1537–1543 (2005).
    [CrossRef] [PubMed]
  10. G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14(1), 24–32 (2003).
    [CrossRef]
  11. N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
    [CrossRef]
  12. L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
    [CrossRef]
  13. J. Zhou, M. Wang, and D. Han, “Experiment observation of self-mixing interference in distributed feedback laser,” Opt. Express 14(12), 5301–5306 (2006).
    [CrossRef] [PubMed]

2009 (1)

Y. Zhao, M. Wang, J. Zhou, and X. Dai; “Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel,” IEEE Photon. Technol. Lett. 21(13), 863–865 (2009).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

2003 (1)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14(1), 24–32 (2003).
[CrossRef]

2002 (3)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

L. Scalise and N. Paone, “Laser Doppler vibrometry based on self-mixing effect,” Opt. Lasers Eng. 38(3-4), 1173–1184 (2002).
[CrossRef]

F. F. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
[CrossRef] [PubMed]

2000 (1)

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[CrossRef]

1998 (1)

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

1992 (1)

1986 (1)

1968 (1)

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1(7), 723–726 (1968).
[CrossRef]

Aarnoudse, J. G.

Bosch, T.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[CrossRef]

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

Bozzi-Pietra, S.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14(1), 24–32 (2003).
[CrossRef]

Dai, X.

Y. Zhao, M. Wang, J. Zhou, and X. Dai; “Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel,” IEEE Photon. Technol. Lett. 21(13), 863–865 (2009).
[CrossRef]

Dassel, A. C. M.

de Mul, F. F.

Donati, S.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14(1), 24–32 (2003).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Giuliani, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14(1), 24–32 (2003).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Gouaux, F.

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

Graaff, R.

Greve, J.

Guo, D.

Han, D.

Koelink, M. K.

Mochizuki, A.

Moes, P.

Mourat, G.

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[CrossRef]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

Paone, N.

L. Scalise and N. Paone, “Laser Doppler vibrometry based on self-mixing effect,” Opt. Lasers Eng. 38(3-4), 1173–1184 (2002).
[CrossRef]

Petoukhova, A. L.

Plantier, G.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

Rudd, M. J.

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1(7), 723–726 (1968).
[CrossRef]

Scalise, L.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

L. Scalise and N. Paone, “Laser Doppler vibrometry based on self-mixing effect,” Opt. Lasers Eng. 38(3-4), 1173–1184 (2002).
[CrossRef]

F. F. de Mul, L. Scalise, A. L. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, “Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis,” Appl. Opt. 41(4), 658–667 (2002).
[CrossRef] [PubMed]

Servagent, N.

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[CrossRef]

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

Shinohara, S.

Slot, M.

Steenbergen, W.

Sumi, M.

Tan, S.

van Herwijnen, M.

Wang, M.

Yoshida, H.

Yu, Y.

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Wang, J. Zhou, and X. Dai; “Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel,” IEEE Photon. Technol. Lett. 21(13), 863–865 (2009).
[CrossRef]

Zhou, J.

Y. Zhao, M. Wang, J. Zhou, and X. Dai; “Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel,” IEEE Photon. Technol. Lett. 21(13), 863–865 (2009).
[CrossRef]

J. Zhou, M. Wang, and D. Han, “Experiment observation of self-mixing interference in distributed feedback laser,” Opt. Express 14(12), 5301–5306 (2006).
[CrossRef] [PubMed]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

Y. Zhao, M. Wang, J. Zhou, and X. Dai; “Self-Mixing Interference in Fiber Ring Laser With Parallel Dual-Channel,” IEEE Photon. Technol. Lett. 21(13), 863–865 (2009).
[CrossRef]

J. Opt. (1)

N. Servagent, F. Gouaux, and T. Bosch, “Measurements of displacement using the self-mixing interference in a laser diode,” J. Opt. 29(3), 168–173 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A, Pure Appl. Opt. 4(6), S283–S294 (2002).
[CrossRef]

J. Phys. E (1)

M. J. Rudd, “A laser Doppler velocimeter employing the laser as a mixer-oscillator,” J. Phys. E 1(7), 723–726 (1968).
[CrossRef]

Meas. Sci. Technol. (1)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, “Self-mixing laser diode vibrometer,” Meas. Sci. Technol. 14(1), 24–32 (2003).
[CrossRef]

Opt. Eng. (1)

G. Mourat, N. Servagent, and T. Bosch, “Distance measurement using the self-mixing effect in a three-electrode distributed Bragg reflector laser diode,” Opt. Eng. 39(3), 738–743 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

L. Scalise and N. Paone, “Laser Doppler vibrometry based on self-mixing effect,” Opt. Lasers Eng. 38(3-4), 1173–1184 (2002).
[CrossRef]

Transactions on Instrumentation and Measurement (1)

L. Scalise, Y. Yu, G. Giuliani, G. Plantier, and T. Bosch, “Self-mixing laser diode velocimetry: application to vibration and velocity Measurement,” Transactions on Instrumentation and Measurement 53(1), 223–232 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The optical feedback system of fiber ring laser. WDM: wavelength-division multiplexer; EDF: erbium-doped fiber

Fig. 2
Fig. 2

(a)The Bessel function of the first kind changing with n and a. (b)The relationship between a and the stop order n when ξ=0.001.

Fig. 3
Fig. 3

Simulative results.(a)SMI signals, (b) frequency spectrum when A 0=3μm, 2μm and 1μm and f 0=4Hz.

Fig. 4
Fig. 4

Experiment setup of fiber ring laser with optical feedback

Fig. 5
Fig. 5

Signal of SMI in experiment and its frequency spectrum.

Fig. 6
Fig. 6

Reconstruction of experimental vibration. The driving voltage of PZT is: (a) 25V, (b) 40V, and (c) 55V.

Tables (1)

Tables Icon

Table 1 The measurement result and error when the driving voltage of PZT is changed.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Plaser=P0+mcos(2ωLextc)=P0+mcos(4πLextλ)
Lext=L0+A0sin(2πf0t+φ)
Plaser=P0+mcos(ϕ0+asin(2πf0t+φ))
ϕ0=4πL0λ,a=4πA0λ
F(f)=F0δ(f)+mcosϕ0ej2nφ[n=1J2n(a)δ(f2nf0)]+jmsinϕ0ej(2n+1)φ{n=0J(2n+1)(a)δ[f(2n+1)f0]}
|F(f)|=F0δ(f)+mcosϕ0[n=1|J2n(a)|δ(f2nf0)]+msinϕ0{n=0|J(2n+1)(a)|δ[f(2n+1)f0]}
n=3.7+1.18a
δA0=λ4πδa=11.18λ4πδnλ14.82δn
Nf>2(3.7+A014.82/λ)f0

Metrics