Abstract

A phase-shift resolving equation is established by combining the phase-shift interference and tomographic ability of a point detector. The theoretical measuring range of confocal microscopy is extended from the single-side linear range of an axial main lobe into the almost complete envelope of an axial main lobe, and the axial tomographic measurement is thus made resistible to the reflectance disturbance and power drift of a laser source. Experimental results indicate that the axial resolution is 0.5nm and lateral precision for grating width measurement is 0.14μm when NA=0.85 and λ=632.8nm. It can therefore be concluded that the proposed phase-shift resolving confocal microscopy can be used to achieve the high axial resolution, wide range and reflectance disturbance inhibition necessary for the measurement of microstructures made of different or hybrid material with high steps.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. V. R. Tata and B. Raj, “Confocal laser scanning microscopy: Applications in material science and technology,” Bull. Mater. Sci. 21(4), 263–278 (1998).
    [CrossRef]
  2. S. Li, Z. Xu, I. Reading, S. F. Yoon, Z. P. Fang, and J. Zhao, “Three dimensional sidewall measurements by laser fluorescent confocal microscopy,” Opt. Express 16(6), 4001–4014 (2008).
    [CrossRef] [PubMed]
  3. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008).
    [CrossRef] [PubMed]
  4. W. C. Warger and C. A. DiMarzio, “Dual-wedge scanning confocal reflectance microscope,” Opt. Lett. 32(15), 2140–2142 (2007).
    [CrossRef] [PubMed]
  5. H. Zhao, W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement of three-dimensional object shapes,” Appl. Opt. 33(20), 4497–4500 (1994).
    [CrossRef] [PubMed]
  6. L. Xue and X. Su, “Phase-unwrapping algorithm based on frequency analysis for measurement of a complex object by the phase-measuring-profilometry method,” Appl. Opt. 40(8), 1207–1215 (2001).
    [CrossRef]
  7. W. Zhao, J. Tan, and L. Qiu, “Bipolar absolute differential confocal approach to higher spatial resolution,” Opt. Express 12(21), 5013–5021 (2004).
    [CrossRef] [PubMed]
  8. W. Zhao, J. Tan, and L. Qiu, “Tri-heterodyne confocal microscope with axial superresolution and higher SNR,” Opt. Express 12(21), 5191–5197 (2004).
    [CrossRef] [PubMed]
  9. K. H. Kwon, B. S. Kim, and K. Cho, “A new scanning heterodyne interferometer scheme for mapping both surface structure and effective local reflection coefficient,” Opt. Express 16(17), 13456–13464 (2008).
    [CrossRef] [PubMed]
  10. D. Lin, Z. Liu, R. Zhang, J. Yan, C. Yin, and Y. Xu, “Step-height measurement by means of a dual-frequency interferometric confocal microscope,” Appl. Opt. 43(7), 1472–1479 (2004).
    [CrossRef] [PubMed]
  11. http://www.pi-china.cn/pdf/pdf/PI_Piezo_NanoPositioners_Section.pdf .

2008 (3)

2007 (1)

2004 (3)

2001 (1)

1998 (1)

B. V. R. Tata and B. Raj, “Confocal laser scanning microscopy: Applications in material science and technology,” Bull. Mater. Sci. 21(4), 263–278 (1998).
[CrossRef]

1994 (1)

Chen, W.

Cho, K.

DiMarzio, C. A.

Fang, Z. P.

Goldberg, B. B.

Ippolito, S. B.

Kim, B. S.

Köklü, F. H.

Kwon, K. H.

Li, S.

Lin, D.

Liu, Z.

Qiu, L.

Quesnel, J. I.

Raj, B.

B. V. R. Tata and B. Raj, “Confocal laser scanning microscopy: Applications in material science and technology,” Bull. Mater. Sci. 21(4), 263–278 (1998).
[CrossRef]

Reading, I.

Su, X.

Tan, J.

Tan, Y.

Tata, B. V. R.

B. V. R. Tata and B. Raj, “Confocal laser scanning microscopy: Applications in material science and technology,” Bull. Mater. Sci. 21(4), 263–278 (1998).
[CrossRef]

Ünlü, M. S.

Vamivakas, A. N.

Warger, W. C.

Xu, Y.

Xu, Z.

Xue, L.

Yan, J.

Yin, C.

Yoon, S. F.

Zhang, R.

Zhao, H.

Zhao, J.

Zhao, W.

Appl. Opt. (3)

Bull. Mater. Sci. (1)

B. V. R. Tata and B. Raj, “Confocal laser scanning microscopy: Applications in material science and technology,” Bull. Mater. Sci. 21(4), 263–278 (1998).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (1)

http://www.pi-china.cn/pdf/pdf/PI_Piezo_NanoPositioners_Section.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Composition of PRCM (1 laser; 2 objective; 3、12 pinhole; 4 objective; 5 polarized beam splitter; 6 λ/4 plate; 7 50% beam splitter; 8 mirror; 9 phase shifter; 10 objective; 11 objective; 13 detector)

Fig. 2
Fig. 2

Resolving range of Eq. (8), and relationship between u, K and δ

Fig. 3
Fig. 3

Influence of eps , nI and es (|δ|=1μm, λ=632.8nm, NA=0.85)

Fig. 4
Fig. 4

Photograph of PRCM and axial resolution of experimental results (1 laser, λ=632.8nm; 2 beam expander; 3 polarized beam splitter; 4 λ/4 plate; 5 50% beam splitter; 6 objective, NA=0.85; 7 polished metal surface; 8 P-517.3CD object stage; 9 P-753.1CD phase shifter; 10 mirror; 11 attenuating plate; 12 objective, NA=0.1; 13 point detector)

Fig. 5
Fig. 5

Comparison of response performances of conventional confocal microscope before and after reflectance disturbance

Fig. 6
Fig. 6

Comparison of PRCM response performances before and after reflectance disturbance

Fig. 7
Fig. 7

Scanning results of TGZ1-PTB grating

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

U(r,0,z)=eif(z)R(r)h2(0,z)
UR(αj)=sexp{i[ϕ(z,f(z))]+αj}
Ij1(ur1,αj)=|U(r,0,z)+UR(αj)|2=s2+R2(r)sinc4(ur1/4π)+2sR(r)sinc2(ur1/4π)cos(αj+ϕ1(ur1))
{I01(ur1,0)=IB(r)+IA(r)sinc2(ur1/4π)cos[ϕ1(ur1)]I11(ur1,π/2)=IB(r)IA(r)sinc2(ur1/4π)sin[ϕ1(ur1)]I21(ur1,π)=IB(r)IA(r)sinc2(ur1/4π)cos[ϕ1(ur1)]I31(ur1,3π/2)=IB(r)+IA(r)sinc2(ur1/4π)sin[ϕ1(ur1)]I41(ur1,2π)=IB(r)+IA(r)sinc2(ur1/4π)cos[ϕ1(ur1)]
{ϕ1(ur1)=12tg1[(I31I11)/(I01I21)]+12ctg1[(I41I21)/(I31I11)]sin[ϕ1(ur1)]=(I31I11)/2IA(r)sinc2(ur1/4π)cos[ϕ1(ur1)]=(I01I21)/2IA(r)sinc2(ur1/4π)
{ϕ2(ur2)=12tg1[(I32I12)/(I02I22)]+12ctg1[(I42I22)/(I32I12)]sin[ϕ2(ur2)]=(I32I12)/2IA(r)sinc2(ur2/4π)cos[ϕ2(ur2)]=(I02I22)/2IA(r)sinc2(ur2/4π)
{I02(ur2,0)=IB'(r)+IA'(r)sinc2(ur2/4π)cos[ϕ2(ur2)]I12(ur2,π/2)=IB'(r)IA'(r)sinc2(ur2/4π)sin[ϕ2(ur2)]I22(ur2,π)=IB'(r)IA'(r)sinc2(ur2/4π)cos[ϕ2(ur2)]I32(ur2,3π/2)=IB'(r)+IA'(r)sinc2(ur2/4π)sin[ϕ2(ur2)]I42(ur2,2π)=IB'(r)+IA'(r)sinc2(ur2/4π)cos[ϕ2(ur2)]
sinc2(ur1/4π)=Ksinc2[(ur1+δ)/4π]
K=sin[ϕ2(ur2)](I31I11)sin[ϕ1(ur1)](I32I12),when|sin[ϕ1(ur1)]|2/2
K=cos[ϕ2(ur2)](I01I21)cos[ϕ1(ur1)](I02I22),when|cos[ϕ1(ur1)]|>2/2

Metrics