Abstract

We report on the design, fabrication and characterization of hollow-core photonic crystal fiber with two robust bandgaps that bridge the benchmark laser wavelengths of 1064nm and 1550nm. The higher-order bandgap arises due to the extremely thin struts of the silica cladding and their fine-tuning relative to the apex size. The optimum strut thickness was found to be approximately one hundredth of the cladding pitch.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [CrossRef] [PubMed]
  2. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
    [CrossRef] [PubMed]
  3. B. J. Mangan, J. K. Lyngso, and P. J. Roberts, “Realization of low loss and polarization maintaining hollow core photonic crystal fibers,” 2008 Conference on Lasers and Electro-Optics 2016–2017 (2008).
  4. Y. Y. Wang, P. S. Light, and F. Benabid, “Core-Surround Shaping of Hollow-Core Photonic Crystal Fiber Via HF Etching,” IEEE Photon. Technol. Lett. 20(12), 1018–1020 (2008).
    [CrossRef]
  5. F. Poletti and D. J. Richardson, “Hollow-core photonic bandgap fibers based on a square lattice cladding,” Opt. Lett. 32(16), 2282–2284 (2007).
    [CrossRef] [PubMed]
  6. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
    [CrossRef] [PubMed]
  7. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
    [CrossRef] [PubMed]
  8. F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
    [CrossRef] [PubMed]
  9. F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [CrossRef] [PubMed]
  10. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  11. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
    [CrossRef] [PubMed]
  12. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 32, 2282–2284 (2007).
  13. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  14. T. A. Birks, P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, J. C. Knight and P. St. J. Russell, “The Fundamental Limits to the Attenuation of Hollow-Core Photonic Crystal Fibres,” ICTON (2005) Paper Mo.B2.1.

2008 (3)

2007 (2)

F. Poletti and D. J. Richardson, “Hollow-core photonic bandgap fibers based on a square lattice cladding,” Opt. Lett. 32(16), 2282–2284 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 32, 2282–2284 (2007).

2006 (1)

2005 (3)

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

2001 (1)

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Benabid, F.

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-Surround Shaping of Hollow-Core Photonic Crystal Fiber Via HF Etching,” IEEE Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 32, 2282–2284 (2007).

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Birks, T. A.

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Broderick, N. G. R.

Burnett, M. T.

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 32, 2282–2284 (2007).

Couny, F.

Farr, L.

Gaeta, A. L.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Gèrôme, F.

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Light, P. S.

Maier, S. A.

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, “Identification of Bloch-modes in hollow-core photonic crystal fiber cladding,” Opt. Express 32, 2282–2284 (2007).

Mangan, B. J.

Mason, M. W.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Poletti, F.

Richardson, D. J.

Roberts, P. J.

Russell, P. S. J.

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Sabert, H.

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

St J Russell, P.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Tomlinson, A.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Wang, Y. Y.

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-Surround Shaping of Hollow-Core Photonic Crystal Fiber Via HF Etching,” IEEE Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

Williams, D. P.

IEEE Photon. Technol. Lett. (1)

Y. Y. Wang, P. S. Light, and F. Benabid, “Core-Surround Shaping of Hollow-Core Photonic Crystal Fiber Via HF Etching,” IEEE Photon. Technol. Lett. 20(12), 1018–1020 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003).
[CrossRef] [PubMed]

Other (2)

B. J. Mangan, J. K. Lyngso, and P. J. Roberts, “Realization of low loss and polarization maintaining hollow core photonic crystal fibers,” 2008 Conference on Lasers and Electro-Optics 2016–2017 (2008).

T. A. Birks, P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, J. C. Knight and P. St. J. Russell, “The Fundamental Limits to the Attenuation of Hollow-Core Photonic Crystal Fibres,” ICTON (2005) Paper Mo.B2.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Density of photonic states for the cladding structure illustrated inset top-left, with a strut thickness of t = 0.04Λ and apex meniscus curvature r = 0.24Λ as defined in the lower-right inset. White represents zero density, and black the greatest. (b) - (d): Mode profiles calculated at the bandgap edge at the positions indicated in the DOPS plot.

Fig. 2
Fig. 2

Effective indices of cladding modes calculated at high symmetry points for six structures. Left: constant strut thickness t = 0.05Λ and varying apex curvature radius r (top) r = 0.10Λ, (middle) rc = 0.15Λ and (bottom) r = 0.20Λ. Right: constant apex curvature r = 0.15Λ and varying strut thickness t (top) t = 0.005Λ, (middle) t = 0.010Λ and (bottom) t = 0.015Λ. The locations of bandgaps that cross the air-line are shaded. The horizontal line represents the air light line at neff = 1.

Fig. 3
Fig. 3

Calculated density of photonic states for the structure illustrated inset top-left, with a strut thickness of t = 0.01Λ and apex meniscus curvature of r = 0.15Λ. The colored lines trace the cladding modes that form the edges of the two bandgaps. The grey line crossing each bandgap shows the effective index of the fundamental core-guided mode of a 7-cell core fiber with the modeled cladding structure. Inset bottom-right: cladding modes of apexes alone (red) and struts alone (blue). The shaded regions indicate the extent of each band.

Fig. 4
Fig. 4

(a) Transmission spectra of 5 m lengths of the fabricated HC-PCF with varying pitch, offset vertically for clarity. (b) SEMs showing the fiber cross-section and the cladding structure (c) Attenuation measured by cutback of a 25 m length of fibre. (d) Measured group delay (squares), and dispersion (solid lines) calculated based on fourth order polynomial fit to group delay data (dashed lines).

Tables (1)

Tables Icon

Table 1 Fundamental and second bandgap widths for the modeled structures. The parameters of the fabricated structure are highlighted in bold type.

Metrics