Abstract

The adsorption of a self-assembled monolayer of molecules on a metal surface commonly causes a red-shift in its surface plasmon resonance. We report that the anomalous dispersion of surface plasmons in a Au nanoslit array structure can cause a blue-shift of optical transmission upon adsorption of a non-absorbing self-assembled monolayer of molecules. We develop a simple model that explains the blue-shift observed in the transmission spectra with monolayer adsorption in terms of the interplay of anomalous dispersion and the cavity resonance of surface plasmons in the nanoslit array.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, Hoboken, NJ, 1999), Chap 7.
  2. R. W. Boyd, and D. J. Gauthier, Progress in Optics, Vol. 43, E. Wolf, ed. (Elsevier, 2002), Chap 6.
  3. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
    [CrossRef]
  4. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
    [CrossRef] [PubMed]
  5. A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
    [CrossRef]
  6. A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999).
    [CrossRef]
  7. G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).
  8. G. Wähling, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 36a, 588–594 (1981).
  9. I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982).
    [CrossRef]
  10. I. Pockrand and J. D. Swalen, “Anomalous dispersion of surface plasma oscillations,” J. Opt. Soc. Am. 68(8), 1147–1151 (1978).
    [CrossRef]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  12. Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
    [CrossRef]
  13. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  15. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  16. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  18. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
    [CrossRef] [PubMed]
  19. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
    [CrossRef]
  20. Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
    [CrossRef]
  21. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
    [CrossRef]
  22. M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
    [CrossRef]
  23. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
    [CrossRef]
  24. E. D. Palik, ed., Optical Constants of Solids (Academic Press, New York, 1998).
  25. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press, Hoboken, NJ, 2000).
  26. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
    [CrossRef] [PubMed]

2009 (1)

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

2008 (1)

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
[CrossRef]

2007 (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

2006 (1)

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

2005 (2)

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13(12), 4485–4491 (2005).
[CrossRef] [PubMed]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

2004 (1)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

2003 (1)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

2002 (1)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

2001 (2)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[CrossRef]

1999 (2)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1994 (1)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[CrossRef] [PubMed]

1982 (2)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[CrossRef]

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982).
[CrossRef]

1981 (1)

G. Wähling, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 36a, 588–594 (1981).

1978 (2)

I. Pockrand and J. D. Swalen, “Anomalous dispersion of surface plasma oscillations,” J. Opt. Soc. Am. 68(8), 1147–1151 (1978).
[CrossRef]

G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999).
[CrossRef]

Brillante, A.

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Chiao, R. Y.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[CrossRef] [PubMed]

Chu, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Dogariu, A.

A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[CrossRef]

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Fakhraai, Z.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Ip, S.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Jung, Y. S.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Kaur, P.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Kim, H. K.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Kofke, M. J.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Kuzmich, K.

A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Mansuripur, M.

Möbius, D.

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982).
[CrossRef]

G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).

Moloney, J. V.

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
[CrossRef]

Pockrand, I.

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982).
[CrossRef]

I. Pockrand and J. D. Swalen, “Anomalous dispersion of surface plasma oscillations,” J. Opt. Soc. Am. 68(8), 1147–1151 (1978).
[CrossRef]

Raether, H.

G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[CrossRef] [PubMed]

Sun, Z.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

Swalen, J. D.

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

Wähling, G.

G. Wähling, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 36a, 588–594 (1981).

G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).

Waldeck, D.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Waldeck, D. H.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Walker, G. C.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Wang, L.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Wang, L. J.

A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[CrossRef]

Weiner, J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
[CrossRef]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

Wong, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[CrossRef]

Wuenschell, J.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Xie, Y.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zakharian, A. R.

Appl. Phys. Lett. (4)

Z. Sun, Y. S. Jung, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83(15), 3021–3023 (2003).
[CrossRef]

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88(24), 243105 (2006).
[CrossRef]

Chem. Rev. (1)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev. 105(4), 1103–1170 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123(7), 1471–1482 (2001).
[CrossRef]

J. Chem. Phys. (1)

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chem. Phys. 77(12), 6289–6295 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Phys. Rev. A (2)

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49(3), 2071–2075 (1994).
[CrossRef] [PubMed]

A. Dogariu, K. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A 63(5), 053806 (2001).
[CrossRef]

Phys. Rev. B (1)

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77(11), 115411 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48(11), 738–741 (1982).
[CrossRef]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Steep anomalous dispersion in coherently prepared Rb vapor,” Phys. Rev. Lett. 83(21), 4277–4280 (1999).
[CrossRef]

Science (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Z. Naturforsch. [C] (2)

G. Wähling, D. Möbius, and H. Raether, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 33a, 907–909 (1978).

G. Wähling, “Resonant interaction of surface plasmons with a dye monolayer,” Z. Naturforsch. [C] 36a, 588–594 (1981).

Other (7)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, Hoboken, NJ, 1999), Chap 7.

R. W. Boyd, and D. J. Gauthier, Progress in Optics, Vol. 43, E. Wolf, ed. (Elsevier, 2002), Chap 6.

U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

E. D. Palik, ed., Optical Constants of Solids (Academic Press, New York, 1998).

D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press, Hoboken, NJ, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

This figure shows a side view of two nanoslits in a metal film (thickness H) on a quartz (SiO2) substrate. The two slits define a metal slab in the center which has a thickness H, a width L, and is ‘infinitely’ long in the other dimension. This metal slab, or island, provides a resonant cavity for surface plasmons about its periphery.

Fig. 2
Fig. 2

(a) SEM images of three different slit arrays that were fabricated by focused-ion beam etching (1 slit, 2 slits, and 5 slits) are shown. The scale bar is 500 nm. (b) A schematic diagram for the method used to measure the transmission spectra is shown. (c) Transmission spectra of Ag nanoslit arrays (slit width: 90 nm; grating period: 450 nm; Ag thickness: 100 nm). The number of slits varies from 1, 2, 3, 5 to 10.

Fig. 3
Fig. 3

The image shows the charge distribution for a resonant surface plasmon polarization, as calculated by FDTD for a 2-slit structure. A quadrupolar resonance is observed along the periphery of the metal island at the peak transmission wavelength.

Fig. 4
Fig. 4

The calculated wavelength dependence of the SP propagation constant (β) is shown for various different interfaces [Ag/SiO2, Au/SiO2, Au/Si, and Au/air-slit(100-nm width)]. (a) Re(β), (b) Im(β), (c) Re(β)/λ0 , and (d) β/εd (both the real and imaginary parts). In (a)-(c), black: Ag/SiO2; red: Au/Si; green: Au/SiO2; cyan: Au/air-slit. In (d), red: Au; blue: Ag; solid: real part; dashed: imaginary part.

Fig. 5
Fig. 5

The calculated wavelength dependence of the SP propagation constant (β) is shown for Au/Si/SiO2 interfaces where the Si thickness ranges from 0, 10 nm, 20 nm to 40 nm. (a) Re(β) and (b) Im(β).

Fig. 6
Fig. 6

Experimental transmission spectra of Ag or Au nanoslit arrays: dashed (before chemical modification of metal surface: adsorption of a SAM layer) and solid (after the modification). (a) Ag/SiO2, (b) Au/SiO2, (c) Au/Ag(10-nm thick)/SiO2, and (d) Au/Si(10-nm thick)/SiO2. Grating period: 370 nm for (a) and 300 nm for (b)-(d).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

εm(ω)=1ωpe2ω2+iγeω+jωpj2ωj2ω2iγjω
mλ0Ntop(bottom)L
Ntop(bottom)εmεd,top(bottom)εm+εd,top(bottom)
mλ0=(Ntop+Nbottom)L+2NslitH
mδλ0=[(Ntopλ0+Nbottomλ0)L+2Nslitλ0H]δλ0+(Ntopεd,top)Lδεd,top+2(Nslitεd,slit)Hδεd,slit
δλ0=12(Ntopεd,top)Lδεd,top+(Nslitεd,slit)Hδεd,slit1(Nslitλ0)H(Ntopλ0+Nbottomλ0)L2
δλ0=12(βtopεd,top)Lδεd,top+(βslitεd,slit)Hδεd,slitβslitλ0H+(βtopλ0+βbottomλ0)L2

Metrics