Abstract

This paper presents the results of a feasibility study for the design of multi-band tunable metamaterials based on the use of micro-split SRR (MSSRR) structures. In this study, we have designed and constructed a conventional split-ring resonator (SRR) unit cell (type A) and two modified SRR unit cells having the same design parameters except that they contain two (type B) or four (type C) additional micro-splits on the outer square ring, along the arm having the main split. Transmission characteristics of the resulting MSSRR cells are obtained both numerically and experimentally and compared to those of the ordinary SRR unit cell. It is observed that the presence of the additional micro-splits leads to the increase of resonance frequency by substantial amounts due to the series capacitance effect. Next, we have designed and constructed 2×2 homogeneous arrays of magnetic resonators which consist of the same type of cells (either A, or B, or C). Such MSSRR blocks are found to provide only a single frequency band of operation around the magnetic resonance frequency of the related unit cell structure. Finally, we have designed and constructed 2×2 and 3×2 inhomogeneous arrays which contain columns of different types of metamaterial unit cells. We have shown that these inhomogeneous arrays provide two or three different frequency bands of operations due to the use of different magnetic resonators together. The number of additional micro-splits in a given MSSRR cell can be interactively controlled by various switching technologies to modify the overall metamaterial topology for the purpose of activating different sets of multiple resonance frequencies. In this context, use of electrostatically actuated RF MEMS switches is discussed, and their implementation is suggested as a future work, to control the states of micro-splits in large MSSRR arrays to realize tunable multi-band metamaterials.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
    [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  4. J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
    [CrossRef]
  5. E. Ekmekci, and G. Turhan-Sayan, “Investigation of Permittivity and Permeability for a Novel V-Shaped Metamaterial Using Simulated S-Parameters,” in Proceedings of 5th International Conference on Electrical and Electronics Engineering, (The Chamber of Turkish Electrical Engineers, Bursa, Turkey, 2007), pp. 251–254.
  6. I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005).
    [CrossRef] [PubMed]
  7. E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) .
    [CrossRef]
  8. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
    [CrossRef]
  9. Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 014909 (2007).
    [CrossRef]
  10. E. Ekmekci and G. Turhan-Sayan, “Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters,” Prog. Electromagn. Res. B 12, 35–62 (2009).
    [CrossRef]
  11. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [CrossRef]
  12. F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009).
    [CrossRef] [PubMed]
  13. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
    [CrossRef]
  14. O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84(7), 1198–1200 (2004).
    [CrossRef]
  15. I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
    [CrossRef]
  16. H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
    [CrossRef]
  17. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
    [CrossRef]
  18. D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
    [CrossRef]
  19. A. Vélez, J. Bonache, and F. Martín, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microw. Wirel. Compon. Letters 18(1), 2008.
  20. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
    [CrossRef] [PubMed]
  21. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
    [CrossRef] [PubMed]
  22. T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
    [CrossRef]
  23. M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
    [CrossRef]
  24. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [CrossRef]
  25. K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
    [CrossRef]
  26. J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
    [CrossRef] [PubMed]
  27. J. Han and A. Lakhtakia, “Semiconductor split,ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
    [CrossRef]
  28. I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
    [CrossRef]
  29. T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS switches,” IEEE Antennas Wirel. Propag. Lett. 6(11), 401–404 (2007).
    [CrossRef]
  30. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
    [CrossRef]
  31. R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
    [CrossRef] [PubMed]
  32. D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
    [CrossRef] [PubMed]
  33. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
    [CrossRef] [PubMed]
  34. K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
    [CrossRef]
  35. G. M. Rebeiz, RF MEMS theory, design, and technology, (John Wiley & Sons, Hoboken, NJ, 2003).
  36. A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
    [CrossRef] [PubMed]
  37. F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
    [CrossRef]
  38. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
    [CrossRef]
  39. F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
    [CrossRef]
  40. E. Ekmekci, and G. Turhan-Sayan, “Reducing the electrical size of magnetic metamaterial resonators by geometrical modifications: a comparative study for single-sided and double-sided multiple SRR, spiral and U-Spiral resonators,” in Proceedings of IEEE International Symposium on Antennas & Propagation, (IEEE Antennas and Propagation Society, San Diego, 2009), pp. 1484–1487.
  41. D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990).
    [CrossRef]

2009 (5)

E. Ekmekci and G. Turhan-Sayan, “Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters,” Prog. Electromagn. Res. B 12, 35–62 (2009).
[CrossRef]

F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009).
[CrossRef] [PubMed]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

J. Han and A. Lakhtakia, “Semiconductor split,ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[CrossRef]

2008 (10)

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef] [PubMed]

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[CrossRef]

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
[CrossRef] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

2007 (10)

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
[CrossRef]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[CrossRef] [PubMed]

I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
[CrossRef]

T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS switches,” IEEE Antennas Wirel. Propag. Lett. 6(11), 401–404 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) .
[CrossRef]

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 014909 (2007).
[CrossRef]

2006 (3)

I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
[CrossRef]

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
[CrossRef] [PubMed]

2005 (2)

I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

2004 (3)

J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
[CrossRef]

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84(7), 1198–1200 (2004).
[CrossRef]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1998 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

1990 (1)

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Acher, O.

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84(7), 1198–1200 (2004).
[CrossRef]

Akin, T.

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

Alici, K. B.

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
[CrossRef]

Averitt, R. D.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Aydin, K.

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
[CrossRef] [PubMed]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Azad, A. K.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Aznar, F.

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

Baena, J. D.

J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
[CrossRef]

Bilotti, F.

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
[CrossRef]

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[CrossRef]

Bingham, C.

Bonache, J.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
[CrossRef]

Boulais, K. A.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Bulu, I.

E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) .
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Caglayan, H.

E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) .
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005).
[CrossRef] [PubMed]

Chen, H.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Chen, H. T.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Chettiar, U. K.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Civi, A.

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

Cummer, S.

T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS switches,” IEEE Antennas Wirel. Propag. Lett. 6(11), 401–404 (2007).
[CrossRef]

Cummer, S. A.

Damm, C.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

De Raedt, W.

I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
[CrossRef]

Demir, S.

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

Drachev, V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Economou, E. N.

Ekmekci, E.

E. Ekmekci and G. Turhan-Sayan, “Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters,” Prog. Electromagn. Res. B 12, 35–62 (2009).
[CrossRef]

Epp, L.

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
[CrossRef] [PubMed]

García- García, J.

I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
[CrossRef]

García-García, J.

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

Gehman, V.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Ghodgaonkar, D. K.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990).
[CrossRef]

Giere, A.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

Gil, I.

I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
[CrossRef]

I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
[CrossRef]

Gil, M.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

Grzegorczyk, T. M.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Guven, K.

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Han, J.

J. Han and A. Lakhtakia, “Semiconductor split,ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[CrossRef]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

Hand, T.

T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS switches,” IEEE Antennas Wirel. Propag. Lett. 6(11), 401–404 (2007).
[CrossRef]

Hand, T. H.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Hunt, B. D.

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
[CrossRef] [PubMed]

Jakoby, R.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

Jokerst, N. M.

Kafesaki, M.

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Kang, L.

Kaul, A. B.

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
[CrossRef] [PubMed]

Khoo, I. C.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Kildishev, A. V.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[CrossRef] [PubMed]

Koc, S.

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

Kong, J. A.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Koschny, Th.

Kwon, D.-H.

Lakhtakia, A.

J. Han and A. Lakhtakia, “Semiconductor split,ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[CrossRef]

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Lippens, D.

Long, K.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Marques, R.

J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
[CrossRef]

Martel, J.

J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
[CrossRef]

Martín, F.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
[CrossRef]

I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
[CrossRef]

McPeake, D.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Medina, F.

J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
[CrossRef]

Mu, M.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

O’Brien, S.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

O'Hara, J. F.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Ozbay, E.

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
[CrossRef] [PubMed]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
[CrossRef]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Özbay, E.

E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) .
[CrossRef]

Padilla, W. J.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Palit, S.

Penciu, R. S.

Pendry, J. B.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Qiu, C.-W.

Ramakrishna, S. A.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Ran, L.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Rayms-Keller, A.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Reynet, O.

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84(7), 1198–1200 (2004).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Rottenberg, X.

I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
[CrossRef]

Rule, D. W.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Santiago, F.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Sazegar, M.

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

Shalaev, V. M.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[CrossRef] [PubMed]

Sheng, Z.

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 014909 (2007).
[CrossRef]

Shrekenhamer, D.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Simmons, S.

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

Smith, D. R.

Soukoulis, C. M.

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
[CrossRef] [PubMed]

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Taylor, A. J.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Topalli, K.

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

Toscano, A.

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[CrossRef]

Turhan-Sayan, G.

E. Ekmekci and G. Turhan-Sayan, “Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters,” Prog. Electromagn. Res. B 12, 35–62 (2009).
[CrossRef]

Tyler, T.

Varadan, V. K.

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990).
[CrossRef]

Varadan, V. V.

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 014909 (2007).
[CrossRef]

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990).
[CrossRef]

Vegni, L.

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Wang, D.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

Werner, D. H.

Wong, E. W.

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
[CrossRef] [PubMed]

Wu, B.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

Wu, B.-I.

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

Xiao, S.

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

Yuan, Y.

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zhang, F.

Zhao, H.

Zhao, Q.

Zhao, X.

Zhou, J.

Appl. Phys. Lett. (7)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95(3), 033115 (2009).
[CrossRef]

O. Reynet and O. Acher, “Voltage controlled metamaterial,” Appl. Phys. Lett. 84(7), 1198–1200 (2004).
[CrossRef]

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to streerable antenna,” Appl. Phys. Lett. 89(5), 053509 (2006).
[CrossRef]

D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B.-I. Wu, “Active left-handed material collaborated with microwave varactors,” Appl. Phys. Lett. 91(16), 164101 (2007).
[CrossRef]

K. A. Boulais, D. W. Rule, S. Simmons, F. Santiago, V. Gehman, K. Long, and A. Rayms-Keller, “Tunable split-ring resonator for metamaterials using photocapacitance of semi-insulting GaAs,” Appl. Phys. Lett. 93(4), 043518 (2008).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Miniaturized negative permeability materials,” Appl. Phys. Lett. 91(7), 071121 (2007).
[CrossRef]

Electron. Lett. (2)

M. Gil, C. Damm, A. Giere, M. Sazegar, J. Bonache, R. Jakoby, and F. Martín, “Electrically tunable split-ring resonators at microwave frequencies based on barium-strontium-titanate thick films,” Electron. Lett. 45(8), 417 (2009).
[CrossRef]

I. Gil, F. Martín, X. Rottenberg, and W. De Raedt, “Tunable stop-band filter at Q-band based on RF-MEMS metamaterials,” Electron. Lett. 43(21), 1153 (2007).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

T. Hand and S. Cummer, “Characterization of tunable metamaterial elements using MEMS switches,” IEEE Antennas Wirel. Propag. Lett. 6(11), 401–404 (2007).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Trans. Antenn. Propag. 55(8), 2258–2267 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies,” IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

K. Topalli, A. Civi, S. Demir, S. Koc, and T. Akin, “A monolithic phased array using 3-bit DMTL RF MEMS phase shifters,” IEEE Trans. Microw. Theory Tech. 56(2), 270–277 (2008).
[CrossRef]

I. Gil, J. Bonache, J. García- García, and F. Martín, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech. 54(6), 2665–2674 (2006).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (3)

Z. Sheng and V. V. Varadan, “Tuning the effective properties of metamaterials by changing the substrate properties,” J. Appl. Phys. 101(1), 014909 (2007).
[CrossRef]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

T. H. Hand and S. A. Cummer, “Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings,” J. Appl. Phys. 103(6), 066105 (2008).
[CrossRef]

J. Mod. Opt. (1)

J. Han and A. Lakhtakia, “Semiconductor split,ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt. 56(4), 554–557 (2009).
[CrossRef]

J. Phys. Condens. Matter (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low frequency plasmons in thin-wire structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

F. Aznar, J. García-García, M. Gil, J. Bonache, and F. Martín, “Strategies for the miniaturization of metamaterial resonators,” Microw. Opt. Technol. Lett. 50(5), 1263–1270 (2008).
[CrossRef]

N. J. Phys. (1)

K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Investigation of magnetic resonances for different split-ring resonator parameters and designs,” N. J. Phys. 7(168), 1–15 (2005).
[CrossRef]

Nano Lett. (1)

A. B. Kaul, E. W. Wong, L. Epp, and B. D. Hunt, “Electromechanical carbon nanotube switches for high-frequency applications,” Nano Lett. 6(5), 942–947 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[CrossRef]

Opt. Express (8)

J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef] [PubMed]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef] [PubMed]

R. S. Penciu, K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16(22), 18131–18144 (2008).
[CrossRef] [PubMed]

D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Near-infrared metamaterials with dual-band negative-index characteristics,” Opt. Express 15(4), 1647–1652 (2007).
[CrossRef] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[CrossRef] [PubMed]

I. Bulu, H. Caglayan, and E. Ozbay, “Experimental demonstration of labyrinth-based left-handed metamaterials,” Opt. Express 13(25), 10238–10247 (2005).
[CrossRef] [PubMed]

F. Zhang, L. Kang, Q. Zhao, J. Zhou, X. Zhao, and D. Lippens, “Magnetically tunable left handed metamaterials by liquid crystal orientation,” Opt. Express 17(6), 4360–4366 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (2)

J. D. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Phys. Rev. B 69(1), 014402 (2004).
[CrossRef]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic materials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Phys. Status Solidi (1)

E. Özbay, I. Bulu, and H. Caglayan, “Transmission, reflection and focusing properties of labyrinth based left-handed metamaterials,” Phys. Status Solidi 244(4), 1202–1210 (2007) .
[CrossRef]

Prog. Electromagn. Res. B (1)

E. Ekmekci and G. Turhan-Sayan, “Comparative investigation of resonance characteristics and electrical size of the double-sided SRR, BC-SRR and conventional SRR type metamaterials for varying substrate parameters,” Prog. Electromagn. Res. B 12, 35–62 (2009).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other (4)

E. Ekmekci, and G. Turhan-Sayan, “Investigation of Permittivity and Permeability for a Novel V-Shaped Metamaterial Using Simulated S-Parameters,” in Proceedings of 5th International Conference on Electrical and Electronics Engineering, (The Chamber of Turkish Electrical Engineers, Bursa, Turkey, 2007), pp. 251–254.

A. Vélez, J. Bonache, and F. Martín, “Varactor-loaded complementary split ring resonators (VLCSRR) and their application to tunable metamaterial transmission lines,” IEEE Microw. Wirel. Compon. Letters 18(1), 2008.

G. M. Rebeiz, RF MEMS theory, design, and technology, (John Wiley & Sons, Hoboken, NJ, 2003).

E. Ekmekci, and G. Turhan-Sayan, “Reducing the electrical size of magnetic metamaterial resonators by geometrical modifications: a comparative study for single-sided and double-sided multiple SRR, spiral and U-Spiral resonators,” in Proceedings of IEEE International Symposium on Antennas & Propagation, (IEEE Antennas and Propagation Society, San Diego, 2009), pp. 1484–1487.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic views of (a) Unit cell A, (b) unit cell B, and (c) unit cell C.

Fig. 2
Fig. 2

(a) Schematic of simulation and experimental setup, (b) picture of experimental setup.

Fig. 3
Fig. 3

(a) Transmission characteristics of the type A unit cell. (b) Photograph of the actual resonator.

Fig. 4
Fig. 4

(a) Transmission characteristics of the type B unit cell. (b) Photograph of the actual resonator.

Fig. 5
Fig. 5

(a) Transmission characteristics of the type C unit cell. (b) Photograph of the actual resonator.

Fig. 6
Fig. 6

(a) Transmission characteristics of the 2×2 array of type A unit cell. (b) Photograph of the array.

Fig. 7
Fig. 7

(a) Transmission characteristics of the 2×2 array of type B unit cell. (b) Photograph of the array.

Fig. 8
Fig. 8

(a) Transmission characteristics of the 2×2 array of type C unit cell. (b) Photograph of the array.

Fig. 9
Fig. 9

(a) Transmission characteristics of the 2×2 inhomogeneous array of type A (in column 2) and type B (in column 1) resonators. (b) Photograph of the array.

Fig. 10
Fig. 10

(a) Transmission characteristics of the 2×2 inhomogeneous array of type A (in column 2) and type C (in column 1) resonators. (b) Photograph of the array.

Fig. 11
Fig. 11

(a) Transmission characteristics of the 3×2 inhomogeneous array of type A (in column1), type B (in column 2) and type C (in column 3) resonators. (b) Photograph of the array.

Fig. 12
Fig. 12

Schematic view of the switching representation for type C resonator.

Fig. 13
Fig. 13

Schematic representation and dimensions for the alternative electrically small composite unit cell providing a three-band operation.

Fig. 14
Fig. 14

Transmission and reflection characteristics for the composite cell shown in Fig. 13. (a) Magnitude in dB, (b) Phase in degree.

Fig. 15
Fig. 15

Effective medium parameters for the composite cell shown in Fig. 13. (a) Effective permittivity, (b) Effective permeability.

Metrics