H. C. Wang, S. Fleming, and Y. C. Lee, “A remote, non-destructive laser ultrasonic material evaluation system with simplified optical fibre interferometer detection,” J. Nondestructive Evaluation 28(2), 75–83 (2009).
[Crossref]
H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009).
[Crossref]
[PubMed]
H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fibre Fabry-Perot interferometer,” Meas. Sci. Technol. 16(6), 1261–1266 (2005).
[Crossref]
A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83 (1), C56–C66 (2004).
[Crossref]
[PubMed]
F. Lippert, D. M. Parker, and K. D. Jandt, “In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation,” J. Colloid Interface Sci. 280(2), 442–448 (2004).
[Crossref]
[PubMed]
D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114(1), 542–549 (2003).
[Crossref]
[PubMed]
I. Arias and J. D. Achenbach, “Thermoelastic generation of ultrasound by line-focused laser irradiation,” Int. J. Solids Struct. 40(25), 6917–6935 (2003).
[Crossref]
R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002).
[Crossref]
[PubMed]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001).
[Crossref]
[PubMed]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10(11), R139–R168 (1999).
[Crossref]
B. Mitra, A. Shelamoff, and D. J. Booth, “An optical fibre interferometer for remote detection of laser generated ultrasonics,” Meas. Sci. Technol. 9(9), 1432–1436 (1998).
[Crossref]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
D. Schneider and T. Schwarz, “A photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]
E. Soczkiewicz, “The Penetration Depth of the Rayleigh Surface Waves,” Nondestructive Testing and Evaluation 13(2), 113–119 (1997).
[Crossref]
T. T. Wu and Y. C. Chen, “Dispersion of laser generated surface waves in an epoxy-bonded layered medium,” Ultrasonics 34(8), 793–799 (1996).
[Crossref]
N. Carlson and J. Johnson, “Pulsed laser energy through fiberoptics for generation of ultrasound,” J. Nondestructive Evaluation 12(3), 187–192 (1993).
[Crossref]
A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: Elastic properties of surface layers,” J. Appl. Phys. 71(1), 227–238 (1991).
[Crossref]
S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68(2), 107–112 (1989).
[Crossref]
[PubMed]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
J. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33(5), 485–499 (1986).
[Crossref]
F. Feagin, T. Koulourides, and W. Pigman, “The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material,” Arch. Oral Biol. 14(12), 1407–1417 (1969).
[Crossref]
[PubMed]
I. Arias and J. D. Achenbach, “Thermoelastic generation of ultrasound by line-focused laser irradiation,” Int. J. Solids Struct. 40(25), 6917–6935 (2003).
[Crossref]
I. Arias and J. D. Achenbach, “Thermoelastic generation of ultrasound by line-focused laser irradiation,” Int. J. Solids Struct. 40(25), 6917–6935 (2003).
[Crossref]
S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001).
[Crossref]
[PubMed]
J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]
D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114(1), 542–549 (2003).
[Crossref]
[PubMed]
B. Mitra, A. Shelamoff, and D. J. Booth, “An optical fibre interferometer for remote detection of laser generated ultrasonics,” Meas. Sci. Technol. 9(9), 1432–1436 (1998).
[Crossref]
S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68(2), 107–112 (1989).
[Crossref]
[PubMed]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
N. Carlson and J. Johnson, “Pulsed laser energy through fiberoptics for generation of ultrasound,” J. Nondestructive Evaluation 12(3), 187–192 (1993).
[Crossref]
T. T. Wu and Y. C. Chen, “Dispersion of laser generated surface waves in an epoxy-bonded layered medium,” Ultrasonics 34(8), 793–799 (1996).
[Crossref]
H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fibre Fabry-Perot interferometer,” Meas. Sci. Technol. 16(6), 1261–1266 (2005).
[Crossref]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002).
[Crossref]
[PubMed]
R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002).
[Crossref]
[PubMed]
R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10(11), R139–R168 (1999).
[Crossref]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
F. Feagin, T. Koulourides, and W. Pigman, “The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material,” Arch. Oral Biol. 14(12), 1407–1417 (1969).
[Crossref]
[PubMed]
H. C. Wang, S. Fleming, and Y. C. Lee, “A remote, non-destructive laser ultrasonic material evaluation system with simplified optical fibre interferometer detection,” J. Nondestructive Evaluation 28(2), 75–83 (2009).
[Crossref]
H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009).
[Crossref]
[PubMed]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001).
[Crossref]
[PubMed]
A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: Elastic properties of surface layers,” J. Appl. Phys. 71(1), 227–238 (1991).
[Crossref]
A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83 (1), C56–C66 (2004).
[Crossref]
[PubMed]
F. Lippert, D. M. Parker, and K. D. Jandt, “In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation,” J. Colloid Interface Sci. 280(2), 442–448 (2004).
[Crossref]
[PubMed]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
N. Carlson and J. Johnson, “Pulsed laser energy through fiberoptics for generation of ultrasound,” J. Nondestructive Evaluation 12(3), 187–192 (1993).
[Crossref]
F. Feagin, T. Koulourides, and W. Pigman, “The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material,” Arch. Oral Biol. 14(12), 1407–1417 (1969).
[Crossref]
[PubMed]
B. Krasse, “Biological factors as indicators of future caries,” Int. Dent. J. 38(4), 219–225 (1988).
[PubMed]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009).
[Crossref]
[PubMed]
H. C. Wang, S. Fleming, and Y. C. Lee, “A remote, non-destructive laser ultrasonic material evaluation system with simplified optical fibre interferometer detection,” J. Nondestructive Evaluation 28(2), 75–83 (2009).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
F. Lippert, D. M. Parker, and K. D. Jandt, “In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation,” J. Colloid Interface Sci. 280(2), 442–448 (2004).
[Crossref]
[PubMed]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002).
[Crossref]
[PubMed]
R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002).
[Crossref]
[PubMed]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001).
[Crossref]
[PubMed]
S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001).
[Crossref]
[PubMed]
J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]
B. Mitra, A. Shelamoff, and D. J. Booth, “An optical fibre interferometer for remote detection of laser generated ultrasonics,” Meas. Sci. Technol. 9(9), 1432–1436 (1998).
[Crossref]
J. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33(5), 485–499 (1986).
[Crossref]
J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]
A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: Elastic properties of surface layers,” J. Appl. Phys. 71(1), 227–238 (1991).
[Crossref]
H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fibre Fabry-Perot interferometer,” Meas. Sci. Technol. 16(6), 1261–1266 (2005).
[Crossref]
F. Lippert, D. M. Parker, and K. D. Jandt, “In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation,” J. Colloid Interface Sci. 280(2), 442–448 (2004).
[Crossref]
[PubMed]
S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68(2), 107–112 (1989).
[Crossref]
[PubMed]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
F. Feagin, T. Koulourides, and W. Pigman, “The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material,” Arch. Oral Biol. 14(12), 1407–1417 (1969).
[Crossref]
[PubMed]
J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]
S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68(2), 107–112 (1989).
[Crossref]
[PubMed]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
D. Schneider and T. Schwarz, “A photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
D. Schneider and T. Schwarz, “A photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]
R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10(11), R139–R168 (1999).
[Crossref]
B. Mitra, A. Shelamoff, and D. J. Booth, “An optical fibre interferometer for remote detection of laser generated ultrasonics,” Meas. Sci. Technol. 9(9), 1432–1436 (1998).
[Crossref]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
E. Soczkiewicz, “The Penetration Depth of the Rayleigh Surface Waves,” Nondestructive Testing and Evaluation 13(2), 113–119 (1997).
[Crossref]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fibre Fabry-Perot interferometer,” Meas. Sci. Technol. 16(6), 1261–1266 (2005).
[Crossref]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
H. C. Wang, S. Fleming, and Y. C. Lee, “A remote, non-destructive laser ultrasonic material evaluation system with simplified optical fibre interferometer detection,” J. Nondestructive Evaluation 28(2), 75–83 (2009).
[Crossref]
H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009).
[Crossref]
[PubMed]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
T. T. Wu and Y. C. Chen, “Dispersion of laser generated surface waves in an epoxy-bonded layered medium,” Ultrasonics 34(8), 793–799 (1996).
[Crossref]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
J. A. Rogers, A. A. Maznev, M. J. Banet, and K. A. Nelson, “Optical Generation and Characterization of Acoustic Waves in Thin Films: Fundamentals and Applications,” Annu. Rev. Mater. Sci. 30(1), 117–157 (2000).
[Crossref]
A. J. A. Bruinsma and J. A. Vogel, “Ultrasonic noncontact inspection system with optical fiber methods,” Appl. Opt. 27(22), 4690–4695 (1988).
[Crossref]
[PubMed]
H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48(8), 1444–1451 (2009).
[Crossref]
[PubMed]
F. Feagin, T. Koulourides, and W. Pigman, “The characterization of enamel surface demineralization, remineralization, and associated hardness changes in human and bovine material,” Arch. Oral Biol. 14(12), 1407–1417 (1969).
[Crossref]
[PubMed]
S. Habelitz, S. J. Marshall, G. W. Marshall, and M. Balooch, “Mechanical properties of human dental enamel on the nanometre scale,” Arch. Oral Biol. 46(2), 173–183 (2001).
[Crossref]
[PubMed]
J. L. Cuy, A. B. Mann, K. J. Livi, M. F. Teaford, and T. P. Weihs, “Nanoindentation mapping of the mechanical properties of human molar tooth enamel,” Arch. Oral Biol. 47(4), 281–291 (2002).
[Crossref]
[PubMed]
J. Monchalin, “Optical Detection of Ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33(5), 485–499 (1986).
[Crossref]
21T. S. Jang, S. S. Lee, I. B. Kwon, W. J. Lee, J. J. Lee, T. S. Jang, S. S. Lee, I. B. Kwon, W. J Lee, and J. J. Lee, “Noncontact detection of ultrasonic waves using fiber optic Sagnac interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(6), 767–775 (2002).
[Crossref]
B. Krasse, “Biological factors as indicators of future caries,” Int. Dent. J. 38(4), 219–225 (1988).
[PubMed]
I. Arias and J. D. Achenbach, “Thermoelastic generation of ultrasound by line-focused laser irradiation,” Int. J. Solids Struct. 40(25), 6917–6935 (2003).
[Crossref]
D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114(1), 542–549 (2003).
[Crossref]
[PubMed]
A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: Elastic properties of surface layers,” J. Appl. Phys. 71(1), 227–238 (1991).
[Crossref]
C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[Crossref]
F. Lippert, D. M. Parker, and K. D. Jandt, “In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation,” J. Colloid Interface Sci. 280(2), 442–448 (2004).
[Crossref]
[PubMed]
A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83 (1), C56–C66 (2004).
[Crossref]
[PubMed]
S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68(2), 107–112 (1989).
[Crossref]
[PubMed]
H. C. Wang, S. Fleming, and Y. C. Lee, “A remote, non-destructive laser ultrasonic material evaluation system with simplified optical fibre interferometer detection,” J. Nondestructive Evaluation 28(2), 75–83 (2009).
[Crossref]
N. Carlson and J. Johnson, “Pulsed laser energy through fiberoptics for generation of ultrasound,” J. Nondestructive Evaluation 12(3), 187–192 (1993).
[Crossref]
T. D. Dudderar, C. P. Burger, J. A. Gilbert, J. A. Smith, and B. R. Peters, “Fiber optic sensing for ultrasonic NDE,” J. Nondestructive Evaluation 6(3), 135–146 (1987).
[Crossref]
H. S. Park, G. Thursby, and B. Culshaw, “Detection of laser-generated ultrasound based on phase demodulation technique using a fibre Fabry-Perot interferometer,” Meas. Sci. Technol. 16(6), 1261–1266 (2005).
[Crossref]
R. J. Dewhurst and Q. Shan, “Optical remote measurement of ultrasound,” Meas. Sci. Technol. 10(11), R139–R168 (1999).
[Crossref]
B. Mitra, A. Shelamoff, and D. J. Booth, “An optical fibre interferometer for remote detection of laser generated ultrasonics,” Meas. Sci. Technol. 9(9), 1432–1436 (1998).
[Crossref]
E. Soczkiewicz, “The Penetration Depth of the Rayleigh Surface Waves,” Nondestructive Testing and Evaluation 13(2), 113–119 (1997).
[Crossref]
D. Schneider and T. Schwarz, “A photoacoustic method for characterising thin films,” Surf. Coat. Tech. 91(1–2), 136–146 (1997).
[Crossref]
D. Schneider, T. Witke, T. Schwarz, B. Schoneich, and B. Schultrich, “Testing ultra-thin films by laser-acoustics,” Surf. Coat. Tech. 126(2–3), 136–141 (2000).
[Crossref]
D. Schneider, B. Schultrich, H. J. Scheibe, H. Ziegele, and M. Griepentrog, “A laser-acoustic method for testing and classifying hard surface layers,” Thin Solid Films 332(1–2), 157–163 (1998).
[Crossref]
T. T. Wu and Y. C. Chen, “Dispersion of laser generated surface waves in an epoxy-bonded layered medium,” Ultrasonics 34(8), 793–799 (1996).
[Crossref]
R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, “New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy,” Ultrasound Med. Biol. 28(1), 131–136 (2002).
[Crossref]
[PubMed]
J. Kushibiki, K. L. Ha, H. Kato, N. Chubachi, and F. Dunn, “Application of Acoustic Microscopy to Dental Material Characterization”, IEEE 1987 Ultrasonics Symposium, pp.837–842, 1987.
H. C. Wang, S. Fleming, S. Law, and T. Huang, Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel. in Proceedings of IEEE Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS). 2006. Melbourne, Australia.
A. Briggs, Acoustic Microscopy. 1992: Clarendon Press. Oxford.
J. D. Achenbach, Wave Propagation in Elastic Solids. 1984: Elsevier Science Ltd.
J. L. Rose, Ultrasonic Waves in Solid Media. 1999: Cambridge University Press.
Y. C. Lee, J. O. Kim, and J. D. Achenbach, “Measurement of elastic constants and mass density by acoustic microscopy”, IEEE Ultrasonics Symposium, vol.1, pp.607–612, October 1993.
C. S. Scruby, and L. E. Drain, Laser Ultrasonics: Techniques and Applications. 1990: Adam Hilger Ltd.
T. Kundu, ed., Ultrasonic nondestructive evaluation: engineering and biological material characterization. 2004, CRC Press.
W. D. Miller, “Agency of micro-organisms in decay of the teeth”, Dental Cosmos, 1883.