Abstract

We report on a comparative study of grating based plasmonic band gap cavities. Numerically, we calculate the quality factors of the cavities based on three types of grating surfaces; uniform, biharmonic and Moiré surfaces. We show that for biharmonic band gap cavities, the radiation loss can be suppressed by removing the additional grating component in the cavity region. Due to the gradual change of the surface profile in the cavity region, Moiré type surfaces support cavity modes with higher quality factors. Experimentally, we demonstrate the existence of plasmonic cavities based on uniform gratings. Effective index perturbation and cavity geometries are obtained by additional dielectric loading. Quality factor of 85 is obtained from the measured band structure of the cavity.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  3. J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
    [CrossRef]
  4. Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
    [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
    [CrossRef]
  6. A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
    [CrossRef] [PubMed]
  7. M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P. M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express 15(7), 4238–4246 (2007).
    [CrossRef] [PubMed]
  8. Y. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
    [CrossRef]
  9. J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
    [CrossRef] [PubMed]
  10. A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
    [CrossRef]
  11. A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
    [CrossRef] [PubMed]
  12. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
    [CrossRef]
  13. A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14(22), 10228–10232 (2006).
    [CrossRef] [PubMed]
  14. R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
    [CrossRef]
  15. FDTD Solutions, Lumerical Inc. Suite 201,1290 Homer St.Vancouver, B.C,Canada V6B 2Y5.

2009 (2)

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

2007 (4)

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Y. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

M. Derouard, J. Hazart, G. Lérondel, R. Bachelot, P. M. Adam, and P. Royer, “Polarization-sensitive printing of surface plasmon interferences,” Opt. Express 15(7), 4238–4246 (2007).
[CrossRef] [PubMed]

2006 (1)

2003 (2)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1996 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

1986 (1)

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

1985 (1)

M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Adam, P. M.

Alferness, R. C.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

Atwater, H. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Aydinli, A.

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
[CrossRef] [PubMed]

A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14(22), 10228–10232 (2006).
[CrossRef] [PubMed]

Bachelot, R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Biteen, J. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Bouhelier, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Buhl, L. L.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

Cheng, S.-L.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Colas des Francs, G.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Dereux, A.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Derouard, M.

Divino, M. D.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ertas, G.

Gong, Y.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Gong, Y. Y.

Y. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

Hazart, J.

Joyner, C. H.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Kocabas, A.

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
[CrossRef] [PubMed]

A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14(22), 10228–10232 (2006).
[CrossRef] [PubMed]

Lérondel, G.

Lewis, N. S.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Lu, J.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

Markey, L.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Martyak, M. J. R.

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

Mertens, H.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Nishi, Y.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Polman, A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Royer, P.

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

Senlik, S. S.

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

A. Kocabas, G. Ertas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap structures for surface-enhanced Raman scattering,” Opt. Express 16(17), 12469–12477 (2008).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Vuckovic, J.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Y. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

Weeber, J.-C.

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, “Plasmonic enhancement of emission from Si-nanocrystals,” Appl. Phys. Lett. 94(1), 013106 (2009).
[CrossRef]

Y. Y. Gong and J. Vuckovic, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007).
[CrossRef]

R. C. Alferness, C. H. Joyner, M. D. Divino, M. J. R. Martyak, and L. L. Buhl, “Narrow-Band Grating Resonator Filters in Ingaasp/Inp Wave-Guides,” Appl. Phys. Lett. 49(3), 125–127 (1986).
[CrossRef]

J. Phys. Chem. C (1)

J. S. Biteen, L. A. Sweatlock, H. Mertens, N. S. Lewis, A. Polman, and H. A. Atwater, “Plasmon-enhanced photoluminescence of silicon quantum dots: Simulation and experiment,” J. Phys. Chem. C 111(36), 13372–13377 (2007).
[CrossRef]

Nano Lett. (1)

J.-C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7(5), 1352–1359 (2007).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (3)

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54(9), 6227–6244 (1996).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003).
[CrossRef]

A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Other (1)

FDTD Solutions, Lumerical Inc. Suite 201,1290 Homer St.Vancouver, B.C,Canada V6B 2Y5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Surface profile of a) biharmonic, b) uniform and c) Moiré gratings. Note the selectively coated dielectric (red line) on the biharmonic and uniform gratings and the cavity region. Localization takes places around the node of the Moiré surface.

Fig. 2
Fig. 2

Reflectivity spectra of a) flat metallic surface, b) uniform metallic grating with period of 298 nm, c) same uniform metallic grating coated with 10 nm of silicon.

Fig. 3
Fig. 3

Effective index and width of the band gap of a uniform grating as a function of silicon loading. The solid lines are to guide the eye.

Fig. 4
Fig. 4

Reflectivity spectra a) and band structure b) of uniform metallic grating with the cavity structure, Note the cavity state (arrow), in the band gap, localized due to selective loading of the uniform metallic grating.

Fig. 5
Fig. 5

a) Schematic of the plasmonic cavity structure, b) FDTD simulation of the electric field distribution in a cavity showing the localization of the cavity mode, c) Dielectric dependence of effective index and the bandgap width.

Fig. 6
Fig. 6

The surface profile, a) field distribution, b) and the grating depth dependence of the Q factor for a biharmonic grating, c).

Fig. 7
Fig. 7

a)The schematic profile and b) the calculated electric field distribution of the cavity. c) Superperiodicity dependence of the Q factor for a Moiré surface.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kSPP=nEFFk0=npk0sin(α)
LΔn=(2m+1)λ4
S(x)=cos(Gx)sin(gx)

Metrics