Abstract

We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the generation of a wide supercontinuum spectrum extending over 1650 nm after 2.15 m of propagation length. The comparison with results obtained from germanium-doped holey fibers confirms the important role of the rod material properties regarding nonlinear process and dispersion.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7161 .
    [CrossRef] [PubMed]
  2. V. V. Kumar, A. George, J. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11(20), 2641–2645 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2641 .
    [CrossRef] [PubMed]
  3. J. Gopinath, H. Shen, H. Sotobayashi, E. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm,” Opt. Express 12(23), 5697–5702 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5697 .
    [CrossRef] [PubMed]
  4. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1280 .
    [CrossRef] [PubMed]
  5. S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
    [CrossRef]
  6. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4928 .
    [CrossRef] [PubMed]
  7. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. Kumar, A. George, J. Knight, and P. Russell, “Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm,” Opt. Express 11(24), 3196–3201 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-24-3196 .
    [CrossRef] [PubMed]
  8. V. V. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-25-1520 .
    [PubMed]
  9. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21076 .
    [CrossRef] [PubMed]
  10. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13(21), 8365–8371 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8365 .
    [CrossRef] [PubMed]
  11. E. E. Serebryannikov and A. M. Zheltikov, “Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis,” J. Opt. Soc. Am. B 23(8), 1700 (2006), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-8-1700 .
    [CrossRef]
  12. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core,” Opt. Express 16(19), 14987–14996 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14987 .
    [CrossRef] [PubMed]
  13. J. Liu, G. Kai, L. Xue, Z. Wang, Y. Liu, Y. Li, C. Zhang, T. Sun, and X. Dong, “Modal cutoff properties in germanium-doped photonic crystal fiber,” Appl. Opt. 45(9), 2035–2038 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-9-2035 .
    [CrossRef] [PubMed]
  14. Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
    [CrossRef]
  15. T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-2-93 .
    [CrossRef]
  16. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
    [CrossRef]
  17. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-534 .
    [CrossRef] [PubMed]
  18. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-15-2173 .
    [CrossRef] [PubMed]
  19. J. Kobelke, K. Schuster, S. Grimm, D. Litzkendorf, J. Kirchhof, A. Schwuchow, H. Bartelt, and A. Gebhardt, “Multicomponent glass microstructured fibers for nonlinear applications,” SPIE Photonics Europe 2008, Strasbourg, 6990–4 (2008).
  20. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica Glasses for Holey Fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-23-6-2046 .
    [CrossRef]
  21. G. P. Agrawal, “Nonlinear Fiber Optics,” 4th edition, Academic Press (2007).
  22. E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7914 .
    [CrossRef] [PubMed]
  23. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-19-4614 .
    [CrossRef] [PubMed]
  24. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30(7), 756–758 (2005), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-30-7-756 .
    [CrossRef] [PubMed]
  25. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13(23), 9556–9569 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9556 .
    [CrossRef] [PubMed]
  26. V. Tombelaine, P. Leproux, V. Couderc, and A. Barthélémy, “Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping,” IEEE Photon. Technol. Lett. 18(23), 2466–2468 (2006).
    [CrossRef]
  27. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
    [CrossRef] [PubMed]
  28. K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO 2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
    [CrossRef]
  29. A. Labruyère, V. Tombelaine, P. Leproux, V. Couderc, F. Gérôme, G. Humbert, J. Kobelke, K. Schuster, and H. Bartelt, “Intermodal four-wave mixing in structured-core photonic crystal fiber: experimental results,” in Conference on Lasers and Electro-Optics (CLEO) and The International Quantum Electronics Conference (IQEC), Optical Society of America, CFS3 (2009).

2008 (6)

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
[CrossRef] [PubMed]

T. Sun, G. Kai, Z. Wang, S. Yuan, and X. Dong, “Enhanced nonlinearity in photonic crystal fiber by germanium doping in the core region,” Chin. Opt. Lett. 6(2), 93–95 (2008), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-6-2-93 .
[CrossRef]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7161 .
[CrossRef] [PubMed]

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core,” Opt. Express 16(19), 14987–14996 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14987 .
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21076 .
[CrossRef] [PubMed]

2007 (2)

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-15-2173 .
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

2006 (6)

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthélémy, “Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping,” IEEE Photon. Technol. Lett. 18(23), 2466–2468 (2006).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1280 .
[CrossRef] [PubMed]

J. Liu, G. Kai, L. Xue, Z. Wang, Y. Liu, Y. Li, C. Zhang, T. Sun, and X. Dong, “Modal cutoff properties in germanium-doped photonic crystal fiber,” Appl. Opt. 45(9), 2035–2038 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-9-2035 .
[CrossRef] [PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4928 .
[CrossRef] [PubMed]

E. E. Serebryannikov and A. M. Zheltikov, “Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonperturbative numerical analysis,” J. Opt. Soc. Am. B 23(8), 1700 (2006), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-8-1700 .
[CrossRef]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7914 .
[CrossRef] [PubMed]

2005 (5)

2004 (3)

2003 (2)

2002 (2)

An, J. W.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Andersen, T.

Bang, O.

Bartelt, H.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Barthélémy, A.

Blandin, P.

Brantley, C.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Brilland, L.

Buchter, S. C.

Chai, L.

Chartier, T.

Cordeiro, C. M. B.

Couderc, V.

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-15-2173 .
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthélémy, “Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping,” IEEE Photon. Technol. Lett. 18(23), 2466–2468 (2006).
[CrossRef]

Cronin-Golomb, M.

Domachuk, P.

Dong, X.

Druon, F.

Duligall, J.

Edwards, E.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Efimov, A.

Fallnich, C.

Fang, X.-H.

Feng, X.

Florous, N.

Frosz, M. H.

Fulconis, J.

Gebhardt, A.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Genty, G.

George, A.

George, A. K.

Georges, P.

Gopinath, J.

Grimm, S.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Hanna, M.

Hansen, K. P.

Hasegawa, T.

Hewak, D. W.

Ho, H. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
[CrossRef]

Hu, M.-L.

Hundertmark, H.

Ippen, E.

Jin, W.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
[CrossRef]

Joly, N. Y.

Ju, J.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
[CrossRef]

Kai, G.

Kaivola, M.

Kim, J. H.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Kimmelma, O.

Kirchhof, J.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Knight, J.

Knight, J. C.

Kobelke, J.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Koshiba, M.

Kracht, D.

Kumar, V. V.

Kumar, V. V. R. K.

Lacroix, S.

Lee, J.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Lehtonen, M.

Leproux, P.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett. 32(15), 2173–2175 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-15-2173 .
[CrossRef] [PubMed]

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthélémy, “Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping,” IEEE Photon. Technol. Lett. 18(23), 2466–2468 (2006).
[CrossRef]

Lesvigne, C.

Li, Y.

Li, Y.-F.

Limpert, J.

Liu, B.-W.

Liu, J.

Liu, Y.

Ludvigsen, H.

Luo, C.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Luo, J.

Mairaj, A. K.

Monro, T. M.

Monteville, A.

Moselund, P. M.

Nagashima, T.

Nakajima, K.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO 2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

Nguyen, T.

Ohashi, M.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO 2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

Omenetto, F.

Omenetto, F. G.

Räikkönen, E.

Rarity, J.

Rasmussen, P. D.

Reeves, W.

Renversez, G.

Ross, M.

Ruffin, P.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Russell, P.

Russell, P. St. J.

Saitoh, K.

Schimpf, D.

Schreiber, T.

Schuster, K.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Schwuchow, A.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Serebryannikov, E. E.

Shen, H.

Smektala, F.

Sotobayashi, H.

Stone, J. M.

Sugimoto, N.

Sun, T.

Taylor, A.

Taylor, A. J.

Thomsen, C. L.

Tombelaine, V.

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthélémy, “Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping,” IEEE Photon. Technol. Lett. 18(23), 2466–2468 (2006).
[CrossRef]

Tonello, A.

Tong, W.

Traynor, N.

Troles, J.

Tünnermann, A.

Urbanczyk, W.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Voronin, A. A.

Wadsworth, W.

Wandt, D.

Wang, A.

Wang, C.-Y.

Wang, D. N.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
[CrossRef]

Wang, Z.

Wehner, M. R.

Wolchover, N. A.

Xue, L.

Yin, S. S.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Yuan, S.

Zhan, C.

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Zhang, C.

Zheltikov, A. M.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (2)

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthélémy, “Visible supercontinuum generation in holey fibers by dual-wavelength subnanosecond pumping,” IEEE Photon. Technol. Lett. 18(23), 2466–2468 (2006).
[CrossRef]

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO 2- and F-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

S. S. Yin, J. H. Kim, C. Zhan, J. W. An, J. Lee, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, “Supercontinuum generation in single crystal sapphire fibers,” Opt. Commun. 281(5), 1113–1117 (2008).
[CrossRef]

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with iltra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242(4-6), 327–332 (2004).
[CrossRef]

Opt. Express (15)

V. V. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10(25), 1520–1525 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-25-1520 .
[PubMed]

V. V. Kumar, A. George, J. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11(20), 2641–2645 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2641 .
[CrossRef] [PubMed]

H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. Kumar, A. George, J. Knight, and P. Russell, “Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm,” Opt. Express 11(24), 3196–3201 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-24-3196 .
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12(19), 4614–4624 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-19-4614 .
[CrossRef] [PubMed]

J. Gopinath, H. Shen, H. Sotobayashi, E. Ippen, T. Hasegawa, T. Nagashima, and N. Sugimoto, “Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm,” Opt. Express 12(23), 5697–5702 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5697 .
[CrossRef] [PubMed]

J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-534 .
[CrossRef] [PubMed]

K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13(21), 8365–8371 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8365 .
[CrossRef] [PubMed]

T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13(23), 9556–9569 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9556 .
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in Chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1280 .
[CrossRef] [PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4928 .
[CrossRef] [PubMed]

E. Räikkönen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14(17), 7914–7923 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7914 .
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16(4), 2670–2675 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2670 .
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7161 .
[CrossRef] [PubMed]

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-F. Li, L. Chai, C.-Y. Wang, W. Tong, J. Luo, A. A. Voronin, and A. M. Zheltikov, “Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core,” Opt. Express 16(19), 14987–14996 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14987 .
[CrossRef] [PubMed]

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16(25), 21076–21086 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-25-21076 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007).
[CrossRef]

Other (3)

J. Kobelke, K. Schuster, S. Grimm, D. Litzkendorf, J. Kirchhof, A. Schwuchow, H. Bartelt, and A. Gebhardt, “Multicomponent glass microstructured fibers for nonlinear applications,” SPIE Photonics Europe 2008, Strasbourg, 6990–4 (2008).

G. P. Agrawal, “Nonlinear Fiber Optics,” 4th edition, Academic Press (2007).

A. Labruyère, V. Tombelaine, P. Leproux, V. Couderc, F. Gérôme, G. Humbert, J. Kobelke, K. Schuster, and H. Bartelt, “Intermodal four-wave mixing in structured-core photonic crystal fiber: experimental results,” in Conference on Lasers and Electro-Optics (CLEO) and The International Quantum Electronics Conference (IQEC), Optical Society of America, CFS3 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross sectional scanning electron microscope (SEM) image of the fiber; (b) Schematic of the refractive index profile of the PCF; (c) Measured values (squares) and fitting curve (red solid) of the multi-component glass refractive index; (d) Measured group velocity dispersion of the PCF for the LP01 mode (black triangles) and the LP11 mode (red squares). Dispersion curves for the LP01 mode (black solid) and the LP11 mode (red solid), calculated by using the approximated refractive index curve.

Fig. 2
Fig. 2

Experimental setup (λ/2: half-wave plate, P: polarizer, OSA: optical spectrum analyzer)

Fig. 3
Fig. 3

(a) Experimental output spectrum as a function of fiber length for a pump peak power of 7 kW coupled into the PCF (inset: output near field patterns); (b) Measured spectrum at the fiber output after 0.2 m of propagation length (Pin = 7 kW); (c) Measured spectrum at the fiber output after 2.15 m of propagation length (Pin = 7 kW).

Fig. 4
Fig. 4

(a) Phase matched wavelengths versus pump wavelength in the case of scalar FWM process using LP01 transverse mode; (b) Measured output spectrum for an input polarization oriented along the fast axis of the PCF. (c) Phase matched wavelengths versus pump wavelength in the case of scalar FWM process using LP11 transverse mode; (d) Measured output spectrum when the input polarization is oriented along the slow axis of the PCF (inset: near field patterns recorded at 532 nm and 632 nm). The dashed line indicates the pump wavelength located at 1064 nm with the corresponding Stokes and anti-Stokes wavelengths.

Fig. 5
Fig. 5

(a) Measured SC output spectrum superimposed with the measured MCG loss (blue zones indicate the positions where the MCG losses are important). (b) Group velocity curves calculated respectively for the LP01 and the LP11 modes by using the approximated refractive index curve. The dashed line indicates the group velocity matching between the 2220 nm IR wave and the 510 nm visible wave.

Fig. 6
Fig. 6

(a) SEM image of the Ge-doped PCF. (b) Experimental output spectrum as a function of fiber length for a pump peak power of 5 kW coupled into the Ge-doped PCF. (c) Phase mismatch curve for intermodal FWM in the Ge-doped PCF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2ωpump=ωStokes+ωantiStokes
Δk=2γP+2kpumpkStokeskantiStokes=0

Metrics