Abstract

Photoacoustic imaging is a modality which makes use of the contrast provided by optical imaging techniques and the spatial resolution and penetration depth similar to acoustic imaging modalities. We have developed a method for fast 3D photoacoustic imaging using a sparse hemispherical array of transducers. Such a system requires characterization of the transducer's response to an ideal point source in order to accurately reconstruct objects in the imaging volume. First, an attempt was made to design an ideal photoacoustic point source via a combination of liquids which would appropriately scatter and absorb the light such that a spherical distribution was achieved. Methylene blue (MB+) was used as the primary optical absorber while Intralipid (IL) was used as the liquid responsible for the optical scatter. A multitude of combinations were tested and the signal uniformity was characterized. The combination of 200 µM MB+ and 0.09% IL was found to produce the most uniform signal over the range of transducers in the hemispherical array. The liquid source was then characterized over a broader range of azimuthal and zenith angles where it was shown the azimuthal consistency was much greater than the stability seen in different zenith elevations. The source was then used in a calibration scan for an imaging volume of 40x40x40 mm3. At 216 points evenly spaced in the imaging volume, parameters were recorded for signal amplitude, width, and time-of-flight. These calibration parameters could then be applied to an iterative reconstruction algorithm in an attempt to more accurately produce images.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Lu, J. Jiang, Y. Su, R. K. Wang, F. Zhang, and J. Yao, “Photoacoustic imaging: Its current status and future development,” in 4th International Conference on Photonics and Imaging in Biology and Medicine, (SPIE, 2006), 6047.
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [CrossRef]
  3. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
    [CrossRef] [PubMed]
  4. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
    [CrossRef] [PubMed]
  5. P. Liu, “The P-transform and photoacoustic image reconstruction,” Phys. Med. Biol. 43(3), 667–674 (1998).
    [CrossRef] [PubMed]
  6. C. G. A. Hoelen and F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39(31), 5872–5883 (2000).
    [CrossRef]
  7. D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, (SPIE, 2001), 4434, pp. 74–80.
  8. M. Xu, and L. V. Wang, “RF-induced thermoacoustic tomography,” in Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS), (Institute of Electrical and Electronics Engineers Inc, 2002), pp. 1211–1212.
  9. D. H. Turnbull and F. S. Foster, “Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(4), 464–475 (1992).
    [CrossRef] [PubMed]
  10. X. Yang and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector,” J. Biomed. Opt. 12(6), 060507 (2007).
    [CrossRef]
  11. C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
    [CrossRef]
  12. R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
    [CrossRef] [PubMed]
  13. P. Ephrat, and J. J. L. Carson, “Measurement of photoacoustic detector sensitivity distribution by robotic source placement,” in 9th Conference on Photons Plus Ultrasound: Imaging and Sensing 2008, (SPIE, 2008), 6856.
  14. F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
    [CrossRef] [PubMed]
  15. Y. Pawitan, S. Kohlmyer, T. Lewellen, and F. O'Sullivan, “PET system calibration and attenuation correction,” in Part 1 (of 3), (IEEE, 1996), pp. 1300–1304.
  16. M. Roumeliotis, P. Ephrat, and J. J. L. Carson, “Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array,” in Photons Plus Ultrasound: Imaging and Sensing2009: The Tenth Conference on Biomedical Thermoacoustics, Optoacoustics and Acousto-optics (SPIE 2009) 7177, 71772F.
  17. P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. L. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008).
    [CrossRef] [PubMed]

2008 (3)

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef]

F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
[CrossRef] [PubMed]

P. Ephrat, M. Roumeliotis, F. S. Prato, and J. J. L. Carson, “Four-dimensional photoacoustic imaging of moving targets,” Opt. Express 16(26), 21570–21581 (2008).
[CrossRef] [PubMed]

2007 (1)

X. Yang and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector,” J. Biomed. Opt. 12(6), 060507 (2007).
[CrossRef]

2006 (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

2003 (1)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

2000 (1)

1998 (1)

P. Liu, “The P-transform and photoacoustic image reconstruction,” Phys. Med. Biol. 43(3), 667–674 (1998).
[CrossRef] [PubMed]

1992 (1)

D. H. Turnbull and F. S. Foster, “Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(4), 464–475 (1992).
[CrossRef] [PubMed]

1991 (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Beekman, F. J.

F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
[CrossRef] [PubMed]

Carson, J. J. L.

de Mul, F. F. M.

Diebold, G. J.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Ephrat, P.

Foster, F. S.

D. H. Turnbull and F. S. Foster, “Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(4), 464–475 (1992).
[CrossRef] [PubMed]

Hoelen, C. G. A.

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Khan, M. I.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[CrossRef] [PubMed]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[CrossRef] [PubMed]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[CrossRef] [PubMed]

Li, C.

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef]

Liu, P.

P. Liu, “The P-transform and photoacoustic image reconstruction,” Phys. Med. Biol. 43(3), 667–674 (1998).
[CrossRef] [PubMed]

Paltauf, G.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Prato, F. S.

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[CrossRef] [PubMed]

Rentmeester, M.

F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
[CrossRef] [PubMed]

Roumeliotis, M.

Sun, T.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Turnbull, D. H.

D. H. Turnbull and F. S. Foster, “Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(4), 464–475 (1992).
[CrossRef] [PubMed]

van der Have, F.

F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
[CrossRef] [PubMed]

Vastenhouw, B.

F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
[CrossRef] [PubMed]

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

Wang, L. V.

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef]

X. Yang and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector,” J. Biomed. Opt. 12(6), 060507 (2007).
[CrossRef]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Yang, X.

X. Yang and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector,” J. Biomed. Opt. 12(6), 060507 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Li and L. V. Wang, “High-numerical-aperture-based virtual point detectors for photoacoustic tomography,” Appl. Phys. Lett. 93(3), 033902 (2008).
[CrossRef]

IEEE Trans. Med. Imaging (1)

F. van der Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,” IEEE Trans. Med. Imaging 27(7), 960–971 (2008).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

D. H. Turnbull and F. S. Foster, “Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(4), 464–475 (1992).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, “Iterative reconstruction algorithm for optoacoustic imaging,” J. Acoust. Soc. Am. 112(4), 1536–1544 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

X. Yang and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector,” J. Biomed. Opt. 12(6), 060507 (2007).
[CrossRef]

Med. Phys. (1)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography using a conventional linear transducer array,” Med. Phys. 30(5), 856–860 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (1)

P. Liu, “The P-transform and photoacoustic image reconstruction,” Phys. Med. Biol. 43(3), 667–674 (1998).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Other (6)

P. Ephrat, and J. J. L. Carson, “Measurement of photoacoustic detector sensitivity distribution by robotic source placement,” in 9th Conference on Photons Plus Ultrasound: Imaging and Sensing 2008, (SPIE, 2008), 6856.

D. Frauchiger, K. P. Kostli, G. Paltauf, M. Frenz, and H. P. Weber, “Optoacoustic tomography using a two dimensional optical pressure transducer and two different reconstruction algorithms,” in Hybrid and Novel Imaging and New Optical Instrumentation for Biomedical Applications, (SPIE, 2001), 4434, pp. 74–80.

M. Xu, and L. V. Wang, “RF-induced thermoacoustic tomography,” in Proceedings of the 2002 IEEE Engineering in Medicine and Biology 24th Annual Conference and the 2002 Fall Meeting of the Biomedical Engineering Society (BMES / EMBS), (Institute of Electrical and Electronics Engineers Inc, 2002), pp. 1211–1212.

Y. Pawitan, S. Kohlmyer, T. Lewellen, and F. O'Sullivan, “PET system calibration and attenuation correction,” in Part 1 (of 3), (IEEE, 1996), pp. 1300–1304.

M. Roumeliotis, P. Ephrat, and J. J. L. Carson, “Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array,” in Photons Plus Ultrasound: Imaging and Sensing2009: The Tenth Conference on Biomedical Thermoacoustics, Optoacoustics and Acousto-optics (SPIE 2009) 7177, 71772F.

T. Lu, J. Jiang, Y. Su, R. K. Wang, F. Zhang, and J. Yao, “Photoacoustic imaging: Its current status and future development,” in 4th International Conference on Photonics and Imaging in Biology and Medicine, (SPIE, 2006), 6047.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). Isometric view of the hemispherical PA imaging array illustrating the transducer arrangement, placement of the liquid reservoir, and the optical fiber PA source. (b). Isometric view of the system for detailed PA source characterization illustrating one transducer, the transducer arm, the liquid reservoir and the optical fiber. The transducer arm was capable of rotation in 15° increments in the zenith direction and 22.5° increments in the azimuthal direction. (c). Example of raw data acquired on a single acoustic transducer. Signal time-of-flight, amplitude, and FWHM are labeled.

Fig. 2
Fig. 2

(a). Peak-to-peak PA signal amplitude as a function of absorption (MB+, top legend) and scatter (Intralipid) for a liquid PA point source. Error bars represent ± one standard deviation. (b) Coefficient of variation for data corresponding to (a).

Fig. 3
Fig. 3

Curves illustrating signal amplitude as a function of azimuthal position for varying zenith orientations. Error bars represent ± one standard deviation.

Fig. 4
Fig. 4

Calibration maps of the metrics describing the PA signal detected by each transducer at each position within the calibration volume. (a) Signal amplitude - the magnitude of the peak-to-peak voltage acquired (b) Signal width - the FWHM of the signal, and (c) Signal time-of-flight - a measure of the arrival time after laser trigger.

Metrics