G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009).

[CrossRef]

A. Vallecchi, F. Capolino, and A. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microwave Wireless Comp. Lett. 19(5), 269–271 (2009).

[CrossRef]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials (Amst.) 1(2), 62–80 (2007).

[CrossRef]

M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55(12), 2930–2941 (2007).

[CrossRef]

L. Markley and G. V. Eleftheriades, “A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization,” IEEE Antennas Wirel. Propag. Lett. 6(11), 28–32 (2007).

[CrossRef]

C. Imhof and R. Zengerle, “Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties,” Opt. Express 14(18), 8257–8262 (2006).

[CrossRef]
[PubMed]

N. Wongkasemand, A. Akyurtlu, and K. A. Marx, “Group theory based design of isotropic negative refractive index metamaterials,” Progress in Electromagnetics Research 63, 295–310 (2006).

[CrossRef]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).

[CrossRef]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).

[CrossRef]
[PubMed]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).

[CrossRef]
[PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).

[CrossRef]

D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005).

[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11(1), 65–74 (2002).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

[CrossRef]

N. Wongkasemand, A. Akyurtlu, and K. A. Marx, “Group theory based design of isotropic negative refractive index metamaterials,” Progress in Electromagnetics Research 63, 295–310 (2006).

[CrossRef]

M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55(12), 2930–2941 (2007).

[CrossRef]

A. Vallecchi, F. Capolino, and A. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microwave Wireless Comp. Lett. 19(5), 269–271 (2009).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009).

[CrossRef]

L. Markley and G. V. Eleftheriades, “A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization,” IEEE Antennas Wirel. Propag. Lett. 6(11), 28–32 (2007).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

[CrossRef]

D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005).

[CrossRef]

L. Markley and G. V. Eleftheriades, “A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization,” IEEE Antennas Wirel. Propag. Lett. 6(11), 28–32 (2007).

[CrossRef]

N. Wongkasemand, A. Akyurtlu, and K. A. Marx, “Group theory based design of isotropic negative refractive index metamaterials,” Progress in Electromagnetics Research 63, 295–310 (2006).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11(1), 65–74 (2002).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

[CrossRef]

M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55(12), 2930–2941 (2007).

[CrossRef]

C. R. Simovski and H. Sailing, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles,” Phys. Lett. A 311(2-3), 254–263 (2003).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).

[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11(1), 65–74 (2002).

[CrossRef]

D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005).

[CrossRef]

A. Vallecchi, F. Capolino, and A. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microwave Wireless Comp. Lett. 19(5), 269–271 (2009).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005).

[CrossRef]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).

[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11(1), 65–74 (2002).

[CrossRef]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).

[CrossRef]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).

[CrossRef]
[PubMed]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials (Amst.) 1(2), 62–80 (2007).

[CrossRef]

C. R. Simovski and H. Sailing, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles,” Phys. Lett. A 311(2-3), 254–263 (2003).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).

[CrossRef]
[PubMed]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).

[CrossRef]
[PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

[CrossRef]

D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005).

[CrossRef]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009).

[CrossRef]

A. Vallecchi, F. Capolino, and A. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microwave Wireless Comp. Lett. 19(5), 269–271 (2009).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

N. Wongkasemand, A. Akyurtlu, and K. A. Marx, “Group theory based design of isotropic negative refractive index metamaterials,” Progress in Electromagnetics Research 63, 295–310 (2006).

[CrossRef]

M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55(12), 2930–2941 (2007).

[CrossRef]

L. Markley and G. V. Eleftheriades, “A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization,” IEEE Antennas Wirel. Propag. Lett. 6(11), 28–32 (2007).

[CrossRef]

A. Vallecchi, F. Capolino, and A. Schuchinsky, “2-D isotropic effective negative refractive index metamaterial in planar technology,” IEEE Microwave Wireless Comp. Lett. 19(5), 269–271 (2009).

[CrossRef]

M. Zedler, C. Caloz, and P. Russer, “A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme,” IEEE Trans. Microw. Theory Tech. 55(12), 2930–2941 (2007).

[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).

[CrossRef]

D. Seetharamdoo, R Sauleau, K Mahdjoubi, and A. C. Tarot, “Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity,” J. Appl. Phys . 98, 063505/1–4 (2005).

[CrossRef]

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Opt. Phys. 11(1), 65–74 (2002).

[CrossRef]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).

[CrossRef]

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials (Amst.) 3(1), 10–27 (2009).

[CrossRef]

C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of Bloch lattices,” Metamaterials (Amst.) 1(2), 62–80 (2007).

[CrossRef]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).

[CrossRef]
[PubMed]

V. Podolskiy, A. Sarychev, and V. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11(7), 735–745 (2003).

[CrossRef]
[PubMed]

C. Imhof and R. Zengerle, “Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties,” Opt. Express 14(18), 8257–8262 (2006).

[CrossRef]
[PubMed]

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).

[CrossRef]

J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).

[CrossRef]
[PubMed]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).

[CrossRef]
[PubMed]

C. R. Simovski and H. Sailing, “Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles,” Phys. Lett. A 311(2-3), 254–263 (2003).

[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).

[CrossRef]
[PubMed]

N. Wongkasemand, A. Akyurtlu, and K. A. Marx, “Group theory based design of isotropic negative refractive index metamaterials,” Progress in Electromagnetics Research 63, 295–310 (2006).

[CrossRef]

A. Grbica, G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98, 043106/1–5 (2005).

M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B 75, 235114/1–9 (2007).

J. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88, 221,103/1–3 (2006).

A. Vallecchi, and F. Capolino, “Metamaterials based on pairs of tightly-coupled scatterers,” in Theory and Phenomena of Metamaterials, chap. 19 (CRC Press, Boca Raton, FL, 2009).

J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design (Research Studies Press, NewYork, 1997).

B. A. Munk, Frequency selective surfaces: Theory and Design (Wiley, New York, 2000).

Th. Koschny, L. Zhang and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71, 121103/1–4 (2005).

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608/1–7 (2004).

C. R. Simovski, S.A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B 75, 195111/1–9 (2007).

C. R. Simovski, “On the extraction of local material parameters of meta-materials from experimental or simulated data,” in Theory and Phenomena of Metamaterials, Chap. 11 (CRC Press, Boca Raton, FL, 2009).