Abstract

For an all-fiber-based single-frequency amplifier, a passive delivery fiber carrying the amplified signal out of the pump combiner may induce unwanted stimulated Brillouin scattering (SBS) and affect amplifier performance. To evaluate the impact, a rate-equation based model has been adopted to study SBS characteristics in the fiber amplifier with a delivery fiber. The model allows independent inputs of many critical parameters, such as the delivery fiber length, temperature distribution, core size, Brillouin gain coefficient, as well as the gain fiber length. The SBS thresholds of the amplifiers under various conditions are computed. The results indicate that the delivery fiber lengths, core diameter, and Brillouin gain coefficient are the most influential parameters which make great impacts on amplifier performance. In addition, the gain fiber length also plays a role on SBS thresholds, but its impact is modest and normally less than a few percent. For an amplifier with a 25 μm gain fiber, to achieve more than 400 W output, the delivery fiber should have a Brillouin gain coefficient <1 × 10−11 m/W with a length of less than 2 m and a core diameter of greater than 35 μm.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gapontsev, “2kW single mode output from the fiber laser,” Photonic West 2005, San Jose, USA, 2005.
  2. R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
    [CrossRef]
  3. H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).
  4. F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
    [CrossRef]
  5. P. Peterka, I. Kasík, V. Mat Jec, V. Kube Ek, and P. Dvo A Ek, “Experimental demonstration of novel end-pumping method for double-clad fiber devices,” Opt. Lett. 31(22), 3240–3242 (2006).
    [CrossRef] [PubMed]
  6. X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
    [CrossRef]
  7. A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
    [CrossRef]
  8. A. Liu, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Technol. (to be published).
  9. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  10. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2492 (1972).
    [CrossRef] [PubMed]
  11. D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
    [CrossRef]

2009

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

2008

H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).

2007

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
[CrossRef]

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

2006

2004

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

1972

Au, M.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Azami, N.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Chen, X.

Costa, A.

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

Crowley, A. M.

Dai, Y. Z.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Demeritt, J. A.

Dvo A Ek, P.

Faucher, M.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Fauchera, M.

A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
[CrossRef]

Gonthier, F.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Gray, S.

Guo, J.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Ichioka, R.

H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).

Iordachescu, D.

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

Kasík, I.

Khazanov, E. A.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

Kube Ek, V.

Kutsuna, M.

H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).

Li, M. J.

Liu, A.

Lovelady, M.

A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
[CrossRef]

Martineau, L.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Mat Jec, V.

Matsuura, T.

H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).

Miranda, R.

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

Mukhin, I. B.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

Ozaki, H.

H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).

Palashov, O. V.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

Peterka, P.

Qiu, X.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Quintino, L.

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

Rossin, V.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Ruffin, A. B.

Séguin, F.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Séguina, F.

A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
[CrossRef]

Skidmore, J.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Smith, R. G.

Stryckman, D.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Venables, D.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Villeneuve, A.

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

Voitovich, A. V.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

Walton, D. T.

Wang, J.

Wettera, A.

A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
[CrossRef]

Wong, V.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Yapp, D.

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

Zenteno, L. A.

Zheleznov, D. S.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

Zucker, E.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

Lightwave Technol.

A. Liu, “Comprehensive modeling of single frequency fiber amplifiers for mitigating stimulated Brillouin scattering,” J. Lightwave Technol. (to be published).

Appl. Opt.

IEEE J. Quantum Electron.

D. S. Zheleznov, I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and A. V. Voitovich, “Faraday rotators with short magneto-optical elements for 50-kW laser power,” IEEE J. Quantum Electron. 43(6), 451–457 (2007).
[CrossRef]

Mater. Des.

R. Miranda, A. Costa, L. Quintino, D. Yapp, and D. Iordachescu, “Characterization of fiber laser welds in X100 pipeline steel,” Mater. Des. 30, 2701–2707 (2009).
[CrossRef]

Materials Science Forum

H. Ozaki, R. Ichioka, T. Matsuura, and M. Kutsuna, “Laser roll welding of dissimilar metal joint of titanium to low carbon steel,” Materials Science Forum 580–582, 543–546 (2008).

Opt. Express

Opt. Lett.

SPIE

F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Séguin, D. Stryckman, and A. Villeneuve, “High-power all-fiber components: the missing link for high power fiber lasers,” Proc. SPIE 5335, 266 (2004).
[CrossRef]

SPIE.

X. Qiu, Y. Z. Dai, M. Au, J. Guo, V. Wong, V. Rossin, D. Venables, J. Skidmore, and E. Zucker, “A high power, high-brightness multi-single-emitter laser pump platform,” Proc. SPIE. 7198, 71980 (2009).
[CrossRef]

A. Wettera, M. Fauchera, M. Lovelady, and F. Séguina, “Tapered fused-bundle splitter capable of 1kW CW operation,” Proc. SPIE. 6453, 64530 (2007).
[CrossRef]

Other

V. Gapontsev, “2kW single mode output from the fiber laser,” Photonic West 2005, San Jose, USA, 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of counter-pumped amplifier with delivery fiber. 1. seed source; 2. pre-amplifier; 3. isolator; 4. pump source; 5. pump combiner; 6. gain fiber; 7. delivery fiber.

Fig. 2
Fig. 2

Signal, pump, and SBS power distribution along the fiber. Gain fiber length: 10 m; delivery fiber length: 2 m. Fiber core diameter: 25 μm.

Fig. 3
Fig. 3

Fiber temperature distribution of an amplifier with 10 m gain fiber and 2 m delivery fiber; a. (upper), delivery fiber temperature is 100 °C; b. (lower), delivery fiber temperature is 0 °C. Gain fiber temperatures are the same.

Fig. 4
Fig. 4

SBS threshold as a function of delivery fiber length for systems with different delivery fiber temperatures and Brillouin gain coefficients. gB shown in figures are delivery fiber Brillouin gain coefficients and is in m/W.

Fig. 5
Fig. 5

SBS threshold as a function of delivery fiber length for delivery fiber with core diameter a. (left) 20 μm; b. (middle) 25 μm; c. (right) 30 μm. Delivery fiber temperature is 0 °C. gB is in m/W.

Fig. 6
Fig. 6

SBS threshold as a function of Brillouin gain coefficient of delivery fiber with core diameter; a. (left) 25 μm; b. (right) 35 μm. Delivery fiber length: 2 m, temperature: 0 °C. Gain fiber temperature difference: 100 °C, Brillouin gain coefficient: 3 × 10−11 m/W.

Fig. 7
Fig. 7

SBS threshold as a function of delivery fiber length for a device having an isolator. Delivery fiber core diameter is 25 μm. gB is in m/W.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dPsdz=(N2σseN1σsa)ΓsPsαsa0PsPsi=1ngSBSiPSBSi/A
dPbdz=(N2σpeN1σpa)ΓpPb+αpa0Pb
dPSBSidz=gSBSiPsPSBSi/A+αsa0PSBSi(N2σseN1σsa)ΓsPSBSi
g(νSBSi)=gBΓ0/2F0Fc×[tan1(F0νSBSi+TcCTΓ0/2)tan1(FcνSBSi+TcCTΓ0/2)]

Metrics