Abstract

Physically valid electromagnetic continuity equations can be generated from either the usual form of the Poynting vector E⃗×H⃗ or the alternative E⃗×B⃗ form. However, the continuity equations are not identical, which means that quantities following from E⃗×H⃗ cannot always be compared directly to those from E⃗×B⃗. In particular, the work done on the bound current densities are attributed differently in the two representations. We also comment on the negative refraction condition used.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Markel, "Correct Definition of the Poynting Vector in Electrically and Magnetically Polarizable Medium Reveals that Negative Refraction is Impossible," Opt. Express 16, 19,152 (2008).
    [CrossRef]
  2. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
    [CrossRef]
  3. P. Kinsler, A. Favaro, and M. McCall, "Four Poynting theorems," Eur. J. Phys., to appear.
  4. M. McCall, A. Lakhtakia, andW. S.Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002).
    [CrossRef]
  5. P. Kinsler and M. W. McCall, "Criteria for negative refraction in active and passive media," Microwave Opt. Tech. Lett. 50, 1804 (2008).
    [CrossRef]
  6. P. Kinsler and M. W. McCall, "Causality-based conditions for negative refraction must be used with care," Phys. Rev. Lett. 101, 167,401 (2008).
    [CrossRef]
  7. F. Richter, M. Florian, and K. Henneberger, "Poynting’s theorem and energy conservation in the propagation of light in bounded media," Europhys. Lett. 13, 117-121 (2008).

2008 (4)

V. A. Markel, "Correct Definition of the Poynting Vector in Electrically and Magnetically Polarizable Medium Reveals that Negative Refraction is Impossible," Opt. Express 16, 19,152 (2008).
[CrossRef]

P. Kinsler and M. W. McCall, "Criteria for negative refraction in active and passive media," Microwave Opt. Tech. Lett. 50, 1804 (2008).
[CrossRef]

P. Kinsler and M. W. McCall, "Causality-based conditions for negative refraction must be used with care," Phys. Rev. Lett. 101, 167,401 (2008).
[CrossRef]

F. Richter, M. Florian, and K. Henneberger, "Poynting’s theorem and energy conservation in the propagation of light in bounded media," Europhys. Lett. 13, 117-121 (2008).

2007 (1)

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
[CrossRef]

2002 (1)

M. McCall, A. Lakhtakia, andW. S.Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002).
[CrossRef]

Favaro, A.

P. Kinsler, A. Favaro, and M. McCall, "Four Poynting theorems," Eur. J. Phys., to appear.

Florian, M.

F. Richter, M. Florian, and K. Henneberger, "Poynting’s theorem and energy conservation in the propagation of light in bounded media," Europhys. Lett. 13, 117-121 (2008).

Heckenberg, N. R.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
[CrossRef]

Henneberger, K.

F. Richter, M. Florian, and K. Henneberger, "Poynting’s theorem and energy conservation in the propagation of light in bounded media," Europhys. Lett. 13, 117-121 (2008).

Kinsler, P.

P. Kinsler and M. W. McCall, "Causality-based conditions for negative refraction must be used with care," Phys. Rev. Lett. 101, 167,401 (2008).
[CrossRef]

P. Kinsler and M. W. McCall, "Criteria for negative refraction in active and passive media," Microwave Opt. Tech. Lett. 50, 1804 (2008).
[CrossRef]

P. Kinsler, A. Favaro, and M. McCall, "Four Poynting theorems," Eur. J. Phys., to appear.

Lakhtakia, A.

M. McCall, A. Lakhtakia, andW. S.Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002).
[CrossRef]

Markel, V. A.

V. A. Markel, "Correct Definition of the Poynting Vector in Electrically and Magnetically Polarizable Medium Reveals that Negative Refraction is Impossible," Opt. Express 16, 19,152 (2008).
[CrossRef]

McCall, M.

M. McCall, A. Lakhtakia, andW. S.Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002).
[CrossRef]

P. Kinsler, A. Favaro, and M. McCall, "Four Poynting theorems," Eur. J. Phys., to appear.

McCall, M. W.

P. Kinsler and M. W. McCall, "Criteria for negative refraction in active and passive media," Microwave Opt. Tech. Lett. 50, 1804 (2008).
[CrossRef]

P. Kinsler and M. W. McCall, "Causality-based conditions for negative refraction must be used with care," Phys. Rev. Lett. 101, 167,401 (2008).
[CrossRef]

Nieminen, T. A.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
[CrossRef]

Pfeifer, R. N. C.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
[CrossRef]

Richter, F.

F. Richter, M. Florian, and K. Henneberger, "Poynting’s theorem and energy conservation in the propagation of light in bounded media," Europhys. Lett. 13, 117-121 (2008).

Rubinsztein-Dunlop, H.

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
[CrossRef]

Eur. J. Phys. (2)

P. Kinsler, A. Favaro, and M. McCall, "Four Poynting theorems," Eur. J. Phys., to appear.

M. McCall, A. Lakhtakia, andW. S.Weiglhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002).
[CrossRef]

Europhys. Lett. (1)

F. Richter, M. Florian, and K. Henneberger, "Poynting’s theorem and energy conservation in the propagation of light in bounded media," Europhys. Lett. 13, 117-121 (2008).

Microwave Opt. Tech. Lett. (1)

P. Kinsler and M. W. McCall, "Criteria for negative refraction in active and passive media," Microwave Opt. Tech. Lett. 50, 1804 (2008).
[CrossRef]

Opt. Express (1)

V. A. Markel, "Correct Definition of the Poynting Vector in Electrically and Magnetically Polarizable Medium Reveals that Negative Refraction is Impossible," Opt. Express 16, 19,152 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

P. Kinsler and M. W. McCall, "Causality-based conditions for negative refraction must be used with care," Phys. Rev. Lett. 101, 167,401 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Momentum of an electromagnetic wave in dielectric media," Rev. Mod. Phys. 79, 1197-1216 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (19)

Equations on this page are rendered with MathJax. Learn more.

· E=1ε0ρb,
· B=0,
× E=tB,
× B=μ0Jb+μ0ε0tE,
t12[ε0E2+1μ0B2]+1μ0·(E×B)+E·Jb=0 .
Jb=tP+×M,
ρb=·P ,
D=ε0E+P,
H=1μ0BM,
· D=0 ,
·B=0 ,
×E= t B ,
×H=tD.
E·tD+H·tB+·(E×H)=0 .
1μ0·E×B=|E·Jb,
·E×H=E·tD+H·tB,
E·Jb=ω E02 Im {μ(ω)ε(ω)}e2k·r,
E·tD+H·tB=ω [μ(ω)ε(ω)+ε(ω)μ(ω)]E0μ(ω)e2k·r.
Im [μ(ω)ε(ω)]<0,

Metrics