Abstract

In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane arrays performance,” Optical Engineering 24(5), 855–862 (1985).
  2. Y. M. Chiang and J. G. Harris, “An Analog Integrated Circuit for Continuous-time Gain and Offset Calibration of Sensor Arrays,” Journal of Analog Integrated Circuits and Signal Processing 12, 231–238 (1997).
    [Crossref]
  3. J. G. Harris and Y.-M. Chiang, “Minimizing the Ghosting Artifact in Scene-Based Nonuniformity Correction,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing IX, vol. 3377 (Orlando, Florida, 1998).
  4. M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
    [Crossref]
  5. S. N. Torres and M. M. Hayat, “Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Focal Plane Arrays,” The Journal of the Optical Society of America A 20(3), 470–480 (2003).
    [Crossref]
  6. D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).
  7. D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).
  8. S. N. Torres, E. M. Vera, R. A. Reeves, and S. K. Sobarzo, “Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing XIV, vol. 5076 (Orlando, Florida, 2003).
  9. E. M. Vera and S. N. Torres, “Fast Adaptive Nonuniformity Correction for Infrared Focal-Plane Array Detectors,” EURASIP Journal on Applied Signal Processing 13, 1994–2004 (2005).
  10. B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture,” Applied Optics 44(17), 3482–3491 (2005).
    [Crossref]
  11. R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
    [Crossref]
  12. B. M. Ratliff, M. M. Hayat, and R. C. Hardie, “An Algebraic Algorithm for Nonuniformity Correction in Focal Plane Arrays,” The Journal of the Optical Society of America A 19(9), 1737–1747 (2002).
    [Crossref]
  13. R. C. Hardie and D. R. Droege, “A MAP Estimator for Simultaneous Super-Resolution and Detector Nonuniformity Correction,” EURASIP Journal on Advances in Signal Processing, Article ID 89354 2007 (2007).
    [Crossref]

2005 (2)

E. M. Vera and S. N. Torres, “Fast Adaptive Nonuniformity Correction for Infrared Focal-Plane Array Detectors,” EURASIP Journal on Applied Signal Processing 13, 1994–2004 (2005).

B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture,” Applied Optics 44(17), 3482–3491 (2005).
[Crossref]

2003 (1)

S. N. Torres and M. M. Hayat, “Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Focal Plane Arrays,” The Journal of the Optical Society of America A 20(3), 470–480 (2003).
[Crossref]

2002 (1)

B. M. Ratliff, M. M. Hayat, and R. C. Hardie, “An Algebraic Algorithm for Nonuniformity Correction in Focal Plane Arrays,” The Journal of the Optical Society of America A 19(9), 1737–1747 (2002).
[Crossref]

2000 (1)

R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
[Crossref]

1999 (1)

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

1997 (1)

Y. M. Chiang and J. G. Harris, “An Analog Integrated Circuit for Continuous-time Gain and Offset Calibration of Sensor Arrays,” Journal of Analog Integrated Circuits and Signal Processing 12, 231–238 (1997).
[Crossref]

1985 (1)

A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane arrays performance,” Optical Engineering 24(5), 855–862 (1985).

Armstrong, E. E.

R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
[Crossref]

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

Barone, F. R.

A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane arrays performance,” Optical Engineering 24(5), 855–862 (1985).

Cain, S. C.

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

Caulfield, J. T.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

Chiang, Y. M.

Y. M. Chiang and J. G. Harris, “An Analog Integrated Circuit for Continuous-time Gain and Offset Calibration of Sensor Arrays,” Journal of Analog Integrated Circuits and Signal Processing 12, 231–238 (1997).
[Crossref]

Chiang, Y.-M.

J. G. Harris and Y.-M. Chiang, “Minimizing the Ghosting Artifact in Scene-Based Nonuniformity Correction,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing IX, vol. 3377 (Orlando, Florida, 1998).

Colbert, M.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

Descour, M.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

Droege, D. R.

R. C. Hardie and D. R. Droege, “A MAP Estimator for Simultaneous Super-Resolution and Detector Nonuniformity Correction,” EURASIP Journal on Advances in Signal Processing, Article ID 89354 2007 (2007).
[Crossref]

Hardie, R. C.

B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture,” Applied Optics 44(17), 3482–3491 (2005).
[Crossref]

B. M. Ratliff, M. M. Hayat, and R. C. Hardie, “An Algebraic Algorithm for Nonuniformity Correction in Focal Plane Arrays,” The Journal of the Optical Society of America A 19(9), 1737–1747 (2002).
[Crossref]

R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
[Crossref]

R. C. Hardie and D. R. Droege, “A MAP Estimator for Simultaneous Super-Resolution and Detector Nonuniformity Correction,” EURASIP Journal on Advances in Signal Processing, Article ID 89354 2007 (2007).
[Crossref]

Harris, J. G.

Y. M. Chiang and J. G. Harris, “An Analog Integrated Circuit for Continuous-time Gain and Offset Calibration of Sensor Arrays,” Journal of Analog Integrated Circuits and Signal Processing 12, 231–238 (1997).
[Crossref]

J. G. Harris and Y.-M. Chiang, “Minimizing the Ghosting Artifact in Scene-Based Nonuniformity Correction,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing IX, vol. 3377 (Orlando, Florida, 1998).

Hayat, M. M.

S. N. Torres and M. M. Hayat, “Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Focal Plane Arrays,” The Journal of the Optical Society of America A 20(3), 470–480 (2003).
[Crossref]

B. M. Ratliff, M. M. Hayat, and R. C. Hardie, “An Algebraic Algorithm for Nonuniformity Correction in Focal Plane Arrays,” The Journal of the Optical Society of America A 19(9), 1737–1747 (2002).
[Crossref]

R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
[Crossref]

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

Herman, C.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

Hunt, J.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

Hunt, J. D.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

Kruer, M. R.

A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane arrays performance,” Optical Engineering 24(5), 855–862 (1985).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

Milton, A. F.

A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane arrays performance,” Optical Engineering 24(5), 855–862 (1985).

Muse, R. A.

B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture,” Applied Optics 44(17), 3482–3491 (2005).
[Crossref]

Narayanan, B.

B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture,” Applied Optics 44(17), 3482–3491 (2005).
[Crossref]

Ratliff, B. M.

B. M. Ratliff, M. M. Hayat, and R. C. Hardie, “An Algebraic Algorithm for Nonuniformity Correction in Focal Plane Arrays,” The Journal of the Optical Society of America A 19(9), 1737–1747 (2002).
[Crossref]

Reeves, R. A.

S. N. Torres, E. M. Vera, R. A. Reeves, and S. K. Sobarzo, “Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing XIV, vol. 5076 (Orlando, Florida, 2003).

Sarkady, K. A.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

Scribner, D. A.

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

Sobarzo, S. K.

S. N. Torres, E. M. Vera, R. A. Reeves, and S. K. Sobarzo, “Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing XIV, vol. 5076 (Orlando, Florida, 2003).

Torres, S. N.

E. M. Vera and S. N. Torres, “Fast Adaptive Nonuniformity Correction for Infrared Focal-Plane Array Detectors,” EURASIP Journal on Applied Signal Processing 13, 1994–2004 (2005).

S. N. Torres and M. M. Hayat, “Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Focal Plane Arrays,” The Journal of the Optical Society of America A 20(3), 470–480 (2003).
[Crossref]

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

S. N. Torres, E. M. Vera, R. A. Reeves, and S. K. Sobarzo, “Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing XIV, vol. 5076 (Orlando, Florida, 2003).

Vera, E. M.

E. M. Vera and S. N. Torres, “Fast Adaptive Nonuniformity Correction for Infrared Focal-Plane Array Detectors,” EURASIP Journal on Applied Signal Processing 13, 1994–2004 (2005).

S. N. Torres, E. M. Vera, R. A. Reeves, and S. K. Sobarzo, “Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing XIV, vol. 5076 (Orlando, Florida, 2003).

Yasuda, B. J.

R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
[Crossref]

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

Applied Optics (3)

M. M. Hayat, S. N. Torres, E. E. Armstrong, S. C. Cain, and B. J. Yasuda, “Statistical Algorithm for Nonuniformity Correction in Focal-plane Arrays,” Applied Optics 38(5), 772–780 (1999).
[Crossref]

B. Narayanan, R. C. Hardie, and R. A. Muse, “Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture,” Applied Optics 44(17), 3482–3491 (2005).
[Crossref]

R. C. Hardie, M. M. Hayat, E. E. Armstrong, and B. J. Yasuda, “Scene-based Nonuniformity Correction with Video Sequences and Registration,” Applied Optics 39(8), 1241–1250 (2000).
[Crossref]

EURASIP Journal on Applied Signal Processing (1)

E. M. Vera and S. N. Torres, “Fast Adaptive Nonuniformity Correction for Infrared Focal-Plane Array Detectors,” EURASIP Journal on Applied Signal Processing 13, 1994–2004 (2005).

Journal of Analog Integrated Circuits and Signal Processing (1)

Y. M. Chiang and J. G. Harris, “An Analog Integrated Circuit for Continuous-time Gain and Offset Calibration of Sensor Arrays,” Journal of Analog Integrated Circuits and Signal Processing 12, 231–238 (1997).
[Crossref]

Optical Engineering (1)

A. F. Milton, F. R. Barone, and M. R. Kruer, “Influence of non-uniformity on infrared focal plane arrays performance,” Optical Engineering 24(5), 855–862 (1985).

The Journal of the Optical Society of America A (2)

S. N. Torres and M. M. Hayat, “Kalman Filtering for Adaptive Nonuniformity Correction in Infrared Focal Plane Arrays,” The Journal of the Optical Society of America A 20(3), 470–480 (2003).
[Crossref]

B. M. Ratliff, M. M. Hayat, and R. C. Hardie, “An Algebraic Algorithm for Nonuniformity Correction in Focal Plane Arrays,” The Journal of the Optical Society of America A 19(9), 1737–1747 (2002).
[Crossref]

Other (5)

R. C. Hardie and D. R. Droege, “A MAP Estimator for Simultaneous Super-Resolution and Detector Nonuniformity Correction,” EURASIP Journal on Advances in Signal Processing, Article ID 89354 2007 (2007).
[Crossref]

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. D. Hunt, and C. Herman, “Adaptive Nonuniformity Correction for IR Focal Plane Arrays using Neural Networks,” in Proceedings of the SPIE: Infrared Sensors: Detectors, Electronics, and Signal Processing, T. S. Jayadev, ed., vol. 1541, pp. 100–109 (1991).

D. A. Scribner, K. A. Sarkady, M. R. Kruer, J. T. Caulfield, J. Hunt, M. Colbert, and M. Descour, “Adaptive Retina-like Preprocessing for Imaging Detector Arrays,” vol. 3, pp. 1955–1960 (IEEE International Conference on Neural Networks, San Francisco, CA, 1993).

S. N. Torres, E. M. Vera, R. A. Reeves, and S. K. Sobarzo, “Adaptive Scene-Based Nonuniformity Correction Method for Infrared Focal Plane Arrays,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing XIV, vol. 5076 (Orlando, Florida, 2003).

J. G. Harris and Y.-M. Chiang, “Minimizing the Ghosting Artifact in Scene-Based Nonuniformity Correction,” in SPIE Conference on Infrared Imaging Systems: Design Analysis, Modeling, and Testing IX, vol. 3377 (Orlando, Florida, 1998).

Supplementary Material (1)

» Media 1: AVI (3021 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Mean absolute error versus frame number for the various SBNUC algorithms using simulated nonuniformity data.

Fig. 2.
Fig. 2.

Simulated nonuniformity image results (Media 1). (a) Uncorrupted image (b) image with simulated gain and bias nonuniformity (c) corrected using the gated CS method (d) corrected with LMS (e) corrected with adaptive LMS (f) corrected with proposed gated adaptive LMS.

Fig. 3.
Fig. 3.

Absolute error images for (a) gated CS SBNUC (b) gated adaptive LMS SBNUC.

Fig. 4.
Fig. 4.

Infrared image results shown with unsharp masking enhancement. (a) Raw image with residual nonuniformity (b) CS method (c) gated CS method (d) LMS (e) adaptive LMS (f) gated adaptive LMS.

Fig. 5.
Fig. 5.

Corrected images using offset-only SBNUC shown with unsharp masking enhancement. (a) Gated CS (b) gated adaptive LMS.

Fig. 6.
Fig. 6.

Hysteresis MAD images for various SBNUC algorithms. (a) CS (MAD=89.26)(b) gated CS (MAD=59.60) (c) change and intensity gated CS (MAD=44.77) (d) LMS (MAD=26.56) (e) adaptive LMS (MAD=7.86) (f) gated adaptive LMS (MAD=7.36).

Fig. 7.
Fig. 7.

Hysteresis MAD images for offset-only SBNUC with (a) gated CS (MAD=58.82) (b) gated adaptive LMS (MAD=4.79).

Fig. 8.
Fig. 8.

Infrared image results with extreme pixel values. (a) Raw image. Corrected using the (b) CS method (c) gated CS method (d) change and intensity gated CS method (e) LMS (f) gated adaptive LMS.

Fig. 9.
Fig. 9.

Infrared image results with no prior black body correction. (a) Raw image with no black body correction (b) output after bias destriping correction (c) gated CS method (d) gated adaptive LMS.

Tables (1)

Tables Icon

Table 1. Quantitative analysis of gated SBNUC method on real infrared imagery.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Yij(n)=αij(n)Xij(n)+bij(n)+ηij(n),
X̂ij(n)=ĝij(n)Yij(n)+ôij(n),
ĝij(n)=1 Ŝij (n),
ôij(n)=M̂ij(n)Ŝij(n),
M̂ij(n)={(1α)Yij(n)+αM̂ij(n1)Yij(n)Yij(n1)>TM̂ij(n1)otherwise ,
Ŝij(n)={(1α)Yij(n)M̂ij(n)+αŜij(n1)Yij(n)Yij(n1)>TŜij(n1)otherwise,
Eij(n)=X̂ij(n)Bij(n),
ĝij(n+1)=ĝij(n)εij(n)Eij(n)Yij(n),
ôij(n+1)=ôij(n)εij(n)Eij(n),
εij(n)=K1+M2σYij(n)2,
εij(n)={K1+M2σYij(n)2Bij(n)Zij(n)>T0else
Zij(n+1)={Bij(n)Bij(n)Zij(n)>TZij(n)else,
ρ=X̂*h1X̂1 ,

Metrics