Abstract

Electromagnetically-induced transparency (EIT) is observed and analyzed for the group velocity of a femtosecond light pulse interacting with GaAs/AlGaAs multiple quantum wells (MQWs) in a transient regime. The calculated slowdown factor of the group velocity inside the medium due to the dynamic refractive index change is ~2.10 × 103. We discuss the potential of EIT-induced slow light in GaAs/AlGaAs MQWs for ultrafast (~210 GHz) all-optical information processing such as photon routing.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005).
    [CrossRef]
  2. B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16(8), 5350–5361 (2008).
    [CrossRef] [PubMed]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  6. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [CrossRef] [PubMed]
  7. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
    [CrossRef] [PubMed]
  8. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [CrossRef]
  9. M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
    [CrossRef] [PubMed]
  10. M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69(11), 115337 (2004).
    [CrossRef]
  11. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
    [CrossRef] [PubMed]
  12. R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81(7), 1477–1480 (1998).
    [CrossRef]
  13. R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
    [CrossRef]
  14. K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
    [CrossRef]
  15. R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
    [CrossRef]
  16. N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
    [CrossRef]
  17. R. W. Boyd, Nonlinear Optics (Academic Press, New York, 2003).
  18. A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1989).
  19. H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998).
    [CrossRef]
  20. T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
    [CrossRef] [PubMed]
  21. B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001)
    [CrossRef]

2008 (2)

B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16(8), 5350–5361 (2008).
[CrossRef] [PubMed]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001)
[CrossRef]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001)
[CrossRef]

2007 (1)

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[CrossRef]

2005 (4)

N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

2004 (2)

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[CrossRef] [PubMed]

M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69(11), 115337 (2004).
[CrossRef]

2003 (2)

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

2002 (1)

M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[CrossRef] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

1998 (2)

H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998).
[CrossRef]

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81(7), 1477–1480 (1998).
[CrossRef]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

1993 (1)

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

1992 (1)

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

1991 (1)

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bennhardt, D.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Binder, R.

N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81(7), 1477–1480 (1998).
[CrossRef]

Bott, K.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Bradley, C. W. W.

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

Chang, S. W.

Chang-Hasnain, C. J.

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005).
[CrossRef]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[CrossRef] [PubMed]

Chuang, S. L.

Cundiff, S. T.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Cunningham, J. E.

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Damen, T. C.

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Eccleston, R.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[CrossRef]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Ham, B. S.

B. S. Ham, “Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid,” Opt. Express 16(8), 5350–5361 (2008).
[CrossRef] [PubMed]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001)
[CrossRef]

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001)
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Heller, O.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Henneberger, F.

H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998).
[CrossRef]

Ku, P. C.

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005).
[CrossRef]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[CrossRef] [PubMed]

Kuhl, J.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Kwong, N. H.

N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Li, T.

Lindberg, M.

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81(7), 1477–1480 (1998).
[CrossRef]

Mayer, E. J.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Mayhew, N.

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

Nickolaus, H.

H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998).
[CrossRef]

Okawachi, Y.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Palinginis, P.

Phillips, M. C.

M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69(11), 115337 (2004).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[CrossRef] [PubMed]

Poog, K.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Rumyantsev, I.

N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

Ryan, J. F.

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

Ryasnyanskiy, A. I.

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sedgwick, F.

Shah, J.

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Sham, L. J.

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Sharping, J. E.

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Smirl, A. L.

N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

Smith, G. O.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Takayama, R.

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

Taylor, R. A.

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

Thomas, P.

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

Thomas, T. N.

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

Tucker, R. S.

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005).
[CrossRef]

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[CrossRef]

Via, L.

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Wang, H.

M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69(11), 115337 (2004).
[CrossRef]

P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004).
[CrossRef] [PubMed]

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[CrossRef] [PubMed]

Wünsche, H.-J.

H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Electron. Lett. (1)

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Delay-bandwidth product and storage density in slow-light optical buffers,” Electron. Lett. 41(4), 208–209 (2005).
[CrossRef]

J. Lumin. (1)

R. A. Taylor, C. W. W. Bradley, N. Mayhew, T. N. Thomas, and J. F. Ryan, “Femtosecond hole burning measurements in semiconductors,” J. Lumin. 53(1-6), 321–326 (1992).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Commun. (1)

R. A. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Optical and nonlinear optical characteristics of the Ge and GaAs nanoparticle suspensions prepared by laser ablation,” Opt. Commun. 272(1), 242–246 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

B. S. Ham, “Observations of delayed all-optical routing in a slow-light regime,” Phys. Rev. A 78(1), 011808 (2008); For a nonslow light regime, see B. S. Ham, “Potential applications of dark resonance to subpicosecond optical switches in hyper-terahertz repetition rate,” Appl. Phys. Lett. 78(22), 3382–3384 (2001)
[CrossRef]

Phys. Rev. B (3)

K. Bott, O. Heller, D. Bennhardt, S. T. Cundiff, P. Thomas, E. J. Mayer, G. O. Smith, R. Eccleston, J. Kuhl, and K. Poog, “Influence of exciton-exciton interactions on the coherent optical response in GaAs quantum wells,” Phys. Rev. B 48(23), 17418–17426 (1993).
[CrossRef]

M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69(11), 115337 (2004).
[CrossRef]

N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005).
[CrossRef]

Phys. Rev. Lett. (6)

M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91(18), 183602 (2003).
[CrossRef] [PubMed]

R. Binder and M. Lindberg, “Ultrafast adiabatic population transfer in p-doped semiconductor quantum wells,” Phys. Rev. Lett. 81(7), 1477–1480 (1998).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. C. Phillips and H. Wang, “Spin coherence and electromagnetically induced transparency via exciton correlations,” Phys. Rev. Lett. 89(18), 186401 (2002).
[CrossRef] [PubMed]

H. Nickolaus, H.-J. Wünsche, and F. Henneberger, “Exciton spin relaxation in semiconductor quantum wells: the role of disorder,” Phys. Rev. Lett. 81(12), 2586–2589 (1998).
[CrossRef]

T. C. Damen, L. Via, J. E. Cunningham, J. Shah, and L. J. Sham, “Subpicosecond spin relaxation dynamics of excitons and free carriers in GaAs quantum wells,” Phys. Rev. Lett. 67(24), 3432–3435 (1991).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[CrossRef]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic Press, New York, 2003).

A. Yariv, Quantum Electronics (John Wiley & Sons, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) GaAs MQW sample configuration; (b) absorption spectrum of the sample with 1s HH and 1s LH absorption peaks; (c) electron transitions between the HH bands and the conduction bands; and (d) HH exciton transitions between the single-exciton states and two-exciton states.

Fig. 2
Fig. 2

EIT in GaAs MQWs in a transient regime for a 25 fs probe light at (a) the coupling laser wavelength λc = 789.92 nm; (b) 790.02 nm; (c) 790.12 nm at the pump-probe delay τ = 0; and at λc = 790.02 nm at the pump-probe delays (d) τ = + 3 ps; (e) −2 ps; and (f) −3 ps. The dashed lines, thicker solid (blue) lines, and thinner solid (red) lines indicate the experimental results without, with the coupling laser, and the best fitting results obtained by the optical Bloch equations (OBEs) with the coupling laser, respectively. The inset shows the pulse shapes and delay τ between the coupling and probe pulses. The dashed arrow indicates the spectral position of the coupling laser pulse.

Fig. 3
Fig. 3

Calculations for the change of absorption with (a) fixed T 31 ( = 1/γ31) and various T 21 ( = 1/γ21), and (b) with fixed T 21 and various T 31 as a function of the coupling laser intensity at a zero time delay with a zero coupling laser frequency detuning.

Fig. 4
Fig. 4

Calculations (a) ~(c) for the change of the refractive index and (d) ~(f) for the group refractive index of GaAs MQWs as a function of wavelength at τ = 0 ps. The dashed lines and solid lines indicate the calculation results without and with coupling laser, respectively. For (a) and (d) λc = 789.92 nm; for (b) and (e) λc = 790.02 nm; and for (c) and (f) λc = 790.12 nm. The dashed arrow indicates the spectral position of the coupling laser pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ˙31(t)=(iΔpγ31)σ31(t)+iμ31Ep(t)+iμ32Ec(t)σ21(t)
σ˙21(t)=(i(ΔpΔc)γ21)σ21(t)+iμ32*Ec*σ31(t)
α(ω)ωcεbacIm[χ(ω)]=2N|μ31|2ωε0εbaccIm[σ31(ω)Ωp(ω)]

Metrics