Abstract

A microfabricated compound eye, comparable to a natural compound eye shows a spherical arrangement of integrated optical units called artificial ommatidia. Each consists of a self-aligned microlens and waveguide. The increase of waveguide length is imperative to obtain high resolution images through an artificial compound eye for wide field-of -view imaging as well as fast motion detection. This work presents an effective method for increasing the waveguide length of artificial ommatidium using a laser induced self-writing process in a photosensitive polymer resin. The numerical and experimental results show the uniform formation of waveguides and the increment of waveguide length over 850 µm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
    [CrossRef] [PubMed]
  2. L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
    [CrossRef] [PubMed]
  3. D. G. Stavenga, "Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics," J. Comp. Physiol. A 189, 1-17 (2003).
  4. J. Y. Kim, K. H. Jeong, and L. P. Lee, "Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005).
    [CrossRef] [PubMed]
  5. A. S. Kewitsch and A. Yariv, "Self-focusing and self-trapping of optical beams upon photopolymerization," Opt. Lett. 21, 24-26 (1996).
    [CrossRef] [PubMed]
  6. S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
    [CrossRef]
  7. K. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, "Quasi-solitonic behavior of self-written waveguides created by photopolymerization," Opt. Lett. 27, 1782-1784 (2002).
    [CrossRef]
  8. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D. J. Lougnot, "Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization," Appl. Opt. 40, 5860-5871 (2001).
    [CrossRef]
  9. A. B. Villafranca, and K. Saravanamuttu, "An Experimental Study of the Dynamics and Temporal Evolution of Self-Trapped Laser Beams in a Photopolymerizable Organosiloxane," J. Phys. Chem. C 112, 17388-17396 (2008).
    [CrossRef]
  10. Z. G. Ling, K. Lian, and L. Jian, "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters, Proc. SPIE 3999,1019-1027 (2000).
    [CrossRef]
  11. J. H. Zhang and K. Saravanamuttu, "The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium," J. Am. Chem. Soc. 128, 14913-14923 (2006).Q1
    [CrossRef] [PubMed]

2006 (2)

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

J. H. Zhang and K. Saravanamuttu, "The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium," J. Am. Chem. Soc. 128, 14913-14923 (2006).Q1
[CrossRef] [PubMed]

2005 (2)

L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
[CrossRef] [PubMed]

J. Y. Kim, K. H. Jeong, and L. P. Lee, "Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005).
[CrossRef] [PubMed]

2003 (1)

D. G. Stavenga, "Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics," J. Comp. Physiol. A 189, 1-17 (2003).

2002 (1)

2001 (1)

2000 (2)

A. B. Villafranca, and K. Saravanamuttu, "An Experimental Study of the Dynamics and Temporal Evolution of Self-Trapped Laser Beams in a Photopolymerizable Organosiloxane," J. Phys. Chem. C 112, 17388-17396 (2008).
[CrossRef]

Z. G. Ling, K. Lian, and L. Jian, "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters, Proc. SPIE 3999,1019-1027 (2000).
[CrossRef]

1999 (1)

S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

1996 (1)

Bachelot, R.

Carre, C.

Cregut, O.

Deloeil, D.

Dorkenoo, K.

Ecoffet, C.

Fort, A.

Gillot, F.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

J. Y. Kim, K. H. Jeong, and L. P. Lee, "Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005).
[CrossRef] [PubMed]

Jian, L.

Z. G. Ling, K. Lian, and L. Jian, "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters, Proc. SPIE 3999,1019-1027 (2000).
[CrossRef]

Kawata, S.

S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

Kewitsch, A. S.

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

Kim, J. Y.

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
[CrossRef] [PubMed]

J. Y. Kim, K. H. Jeong, and L. P. Lee, "Artificial ommatidia by self-aligned microlenses and waveguides," Opt. Lett. 30, 5-7 (2005).
[CrossRef] [PubMed]

Lian, K.

Z. G. Ling, K. Lian, and L. Jian, "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters, Proc. SPIE 3999,1019-1027 (2000).
[CrossRef]

Ling, Z. G.

Z. G. Ling, K. Lian, and L. Jian, "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters, Proc. SPIE 3999,1019-1027 (2000).
[CrossRef]

Lougnot, D. J.

Mager, L.

Royer, P.

Saravanamuttu, K.

J. H. Zhang and K. Saravanamuttu, "The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium," J. Am. Chem. Soc. 128, 14913-14923 (2006).Q1
[CrossRef] [PubMed]

A. B. Villafranca, and K. Saravanamuttu, "An Experimental Study of the Dynamics and Temporal Evolution of Self-Trapped Laser Beams in a Photopolymerizable Organosiloxane," J. Phys. Chem. C 112, 17388-17396 (2008).
[CrossRef]

Shoji, S.

S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

Stavenga, D. G.

D. G. Stavenga, "Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics," J. Comp. Physiol. A 189, 1-17 (2003).

Szema, R.

L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
[CrossRef] [PubMed]

Villafranca, A. B.

A. B. Villafranca, and K. Saravanamuttu, "An Experimental Study of the Dynamics and Temporal Evolution of Self-Trapped Laser Beams in a Photopolymerizable Organosiloxane," J. Phys. Chem. C 112, 17388-17396 (2008).
[CrossRef]

Yariv, A.

Zhang, J. H.

J. H. Zhang and K. Saravanamuttu, "The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium," J. Am. Chem. Soc. 128, 14913-14923 (2006).Q1
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Appl. Phys. Lett. 75, 737-739 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

J. H. Zhang and K. Saravanamuttu, "The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium," J. Am. Chem. Soc. 128, 14913-14923 (2006).Q1
[CrossRef] [PubMed]

J. Comp. Physiol. A (1)

D. G. Stavenga, "Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics," J. Comp. Physiol. A 189, 1-17 (2003).

Opt. Lett. (3)

Proc. SPIE (2)

A. B. Villafranca, and K. Saravanamuttu, "An Experimental Study of the Dynamics and Temporal Evolution of Self-Trapped Laser Beams in a Photopolymerizable Organosiloxane," J. Phys. Chem. C 112, 17388-17396 (2008).
[CrossRef]

Z. G. Ling, K. Lian, and L. Jian, "Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters, Proc. SPIE 3999,1019-1027 (2000).
[CrossRef]

Science (2)

K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006).
[CrossRef] [PubMed]

L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A schematic diagram of (a) a single ommatidium as an optical unit of an artificial compound eye and (b) the effect of the waveguide length for high resolution wide field-of-view imaging through an artificial compound eye.

Fig. 2.
Fig. 2.

FD-BPM analysis of a coherent light based self-writing process in SU-8 with respect to different UV exposure energy: (a) Exposure energy: 3Eth (b) Exposure energy: 9Eth (c) Exposure energy: 18Eth.

Fig. 3.
Fig. 3.

Microfabrication procedures of artificial ommatidia in a UV sensitive polymer resin (SU-8).

Fig. 4.
Fig. 4.

3D optical sectioning of coupled light (λ=532 nm) using a modified confocal laser scanning microscopy through (a) only microlenses and (b) self-aligned microlens and waveguides.

Fig. 5.
Fig. 5.

Longitudinal increment of microlens induced self-written waveguides exposed by different exposure doses under a constant irradiation power.

Fig. 6.
Fig. 6.

The effects of exposure dose and irradiation power on thewaveguide lengths and core diameters of self-written waveguides: (a) the length and diameter of a self-written waveguide (b) different exposure durations under a constant exposure power, and (c) different irradiation powers under a constant exposure dose.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x , y , z , t ) = Δ n 0 { 1 exp [ 1 U 0 0 t τ E ( t ) 2 d t ] }

Metrics