Abstract

Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on 39K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
    [Crossref] [PubMed]
  2. B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
    [Crossref]
  3. Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
    [Crossref] [PubMed]
  4. S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
    [Crossref]
  5. P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
    [Crossref] [PubMed]
  6. T. P. Purdy and D. M. Stamper-Kurn, “Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization,” Appl. Phys. B 90, 401–405 (2008).
    [Crossref]
  7. H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).
  8. M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
    [Crossref]
  9. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
    [Crossref] [PubMed]
  10. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
    [Crossref] [PubMed]
  11. P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
    [Crossref]
  12. H. Mabuchi and H. J. Kimble, “Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator.” Opt. Lett. 19, 749–751 (1994).
    [Crossref] [PubMed]
  13. C. Henkel, B. Power, and F. Sols, “New light on cavity QED with ultracold atoms,” J. Phys.: Conf. Series 19, 34–39 (2005).
    [Crossref]
  14. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
    [Crossref]
  15. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
    [Crossref]
  16. H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
    [Crossref] [PubMed]
  17. R. Eisenschitz and F. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Z. Physik,  60491–527 (1930).
    [Crossref]
  18. I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, “General theory of van der Waals’ forces,” Sov. Phys. Uspekhi 4, 153–176 (1961).
    [Crossref]
  19. J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface,” Phys. Rev. A 30, 1185–1193 (1984).
    [Crossref]
  20. J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface II,” Phys. Rev. A 32, 2030–2043 (1985).
    [Crossref] [PubMed]
  21. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981).
    [Crossref]
  22. A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
    [Crossref] [PubMed]
  23. T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
    [Crossref] [PubMed]
  24. C. Cohen-Tannoudji, J. Doupont-Roc, and G. Grynberg. Atom-Photon Interactions. Wiley-VCH, Weinheim (2004).
  25. A. D. Rakić, A. Djurišic, J. Elazar, and M. Majewski, “Optical properties of metallic films for vertical-cavity opto-electronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  26. S. Saltiel, D. Bloch, and M. Ducloy, “A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom,” Opt. Comm. 265, 220–233 (2006).
    [Crossref]
  27. E. Palik (Ed.), Optical Handbook of the Optical Constants of Solids, Academic Press, New York, 3 volumes (1998).
  28. O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am. 51, 1058–1061 (1961).
    [Crossref]
  29. A. Lindgård and S. E. Nielsen, “Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I,” Atomic Data and Nuclear Data Tables 19, 533–633 (1977).
  30. C. Corliss and J. Sugar, “Energy levels of potassium, KI through KXIX,” J. Phys. Chem. Ref. Data,  8, 1109–1145 (1979).
    [Crossref]
  31. C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
    [Crossref]
  32. S. Franzen, “Surface plasmon polaritons and plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
    [Crossref]
  33. E. Arimondo, M. Inguscio, and P. Volino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–76 (1977).
    [Crossref]
  34. D. Steck, “Alkali D line data,” http://steck.us/alkalidata/.
  35. J. Dalibard and C Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am B 62023–2045 (1989).
    [Crossref]
  36. H. J. Charmichael, An Open Systems Approach to Quantum Optics, (Springer-Verlag, Berlin, 1993).
  37. L. Bouten, R. van Handel, and M. James, “An introdution to quantum filtering,” SIAM J. Control Optim.,  46, 2199–2241, (2007).
    [Crossref]
  38. R. van Handel and H. Mabuchi, “Quantum projection filter for a highly non-linear model in cavity QED,” J. Opt. B: Quantum Semiclass. Opt.,  vol. 7, pp. S226–S236, 2005.
    [Crossref]
  39. B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
    [Crossref]
  40. E. N. Economou, “Surface plasmons on thin films.” Phys. Rev. 182, 539–554, (1969).
    [Crossref]
  41. W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
    [Crossref]
  42. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces.” Science 305, 847–848, (2004).
    [Crossref] [PubMed]
  43. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
    [Crossref]
  44. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
    [Crossref] [PubMed]
  45. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
    [Crossref]
  46. M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
    [Crossref]

2008 (5)

T. P. Purdy and D. M. Stamper-Kurn, “Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization,” Appl. Phys. B 90, 401–405 (2008).
[Crossref]

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

S. Franzen, “Surface plasmon polaritons and plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
[Crossref]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
[Crossref]

2007 (4)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

L. Bouten, R. van Handel, and M. James, “An introdution to quantum filtering,” SIAM J. Control Optim.,  46, 2199–2241, (2007).
[Crossref]

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
[Crossref]

2006 (2)

S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
[Crossref]

S. Saltiel, D. Bloch, and M. Ducloy, “A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom,” Opt. Comm. 265, 220–233 (2006).
[Crossref]

2005 (4)

R. van Handel and H. Mabuchi, “Quantum projection filter for a highly non-linear model in cavity QED,” J. Opt. B: Quantum Semiclass. Opt.,  vol. 7, pp. S226–S236, 2005.
[Crossref]

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

C. Henkel, B. Power, and F. Sols, “New light on cavity QED with ultracold atoms,” J. Phys.: Conf. Series 19, 34–39 (2005).
[Crossref]

2004 (5)

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces.” Science 305, 847–848, (2004).
[Crossref] [PubMed]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

2003 (2)

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

2002 (1)

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

2001 (1)

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

2000 (1)

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

1999 (1)

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

1998 (1)

1996 (2)

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
[Crossref]

1994 (1)

1992 (1)

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

1989 (1)

J. Dalibard and C Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am B 62023–2045 (1989).
[Crossref]

1985 (1)

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface II,” Phys. Rev. A 32, 2030–2043 (1985).
[Crossref] [PubMed]

1984 (1)

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface,” Phys. Rev. A 30, 1185–1193 (1984).
[Crossref]

1981 (1)

J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981).
[Crossref]

1979 (1)

C. Corliss and J. Sugar, “Energy levels of potassium, KI through KXIX,” J. Phys. Chem. Ref. Data,  8, 1109–1145 (1979).
[Crossref]

1977 (2)

A. Lindgård and S. E. Nielsen, “Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I,” Atomic Data and Nuclear Data Tables 19, 533–633 (1977).

E. Arimondo, M. Inguscio, and P. Volino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–76 (1977).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons on thin films.” Phys. Rev. 182, 539–554, (1969).
[Crossref]

1961 (2)

I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, “General theory of van der Waals’ forces,” Sov. Phys. Uspekhi 4, 153–176 (1961).
[Crossref]

O. S. Heavens, “Radiative transition probabilities of the lower excited states of the alkali metals,” J. Opt. Soc. Am. 51, 1058–1061 (1961).
[Crossref]

1930 (1)

R. Eisenschitz and F. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Z. Physik,  60491–527 (1930).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Anderson, D.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Aoki, T.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Volino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–76 (1977).
[Crossref]

Armen, M.

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Aspect, A.

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

Aspnes, D.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

Barclay, P.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

Barnes, W. L.

W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
[Crossref]

Beige, A.

M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
[Crossref]

Bloch, D.

S. Saltiel, D. Bloch, and M. Ducloy, “A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom,” Opt. Comm. 265, 220–233 (2006).
[Crossref]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

Bouten, L.

L. Bouten, R. van Handel, and M. James, “An introdution to quantum filtering,” SIAM J. Control Optim.,  46, 2199–2241, (2007).
[Crossref]

Bright, V.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Brongersma, M. L.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
[Crossref]

Camerer, S.

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

Carminati, R.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

Cassettari, D.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Cerruti, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Charmichael, H. J.

H. J. Charmichael, An Open Systems Approach to Quantum Optics, (Springer-Verlag, Berlin, 1993).

Chevrollier, M.

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

Cohen-Tannoudji, C

J. Dalibard and C Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am B 62023–2045 (1989).
[Crossref]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Doupont-Roc, and G. Grynberg. Atom-Photon Interactions. Wiley-VCH, Weinheim (2004).

Corliss, C.

C. Corliss and J. Sugar, “Energy levels of potassium, KI through KXIX,” J. Phys. Chem. Ref. Data,  8, 1109–1145 (1979).
[Crossref]

Cornell, E.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Courtois, J.-Y.

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

Dalibard, J.

J. Dalibard and C Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am B 62023–2045 (1989).
[Crossref]

Dayan, B.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Diot, Q.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Djurišic, A.

Doupont-Roc, J.

C. Cohen-Tannoudji, J. Doupont-Roc, and G. Grynberg. Atom-Photon Interactions. Wiley-VCH, Weinheim (2004).

Ducloy, M.

S. Saltiel, D. Bloch, and M. Ducloy, “A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom,” Opt. Comm. 265, 220–233 (2006).
[Crossref]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

Dzyaloshinskii, I. E.

I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, “General theory of van der Waals’ forces,” Sov. Phys. Uspekhi 4, 153–176 (1961).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons on thin films.” Phys. Rev. 182, 539–554, (1969).
[Crossref]

Efremenko, A.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

Eisenschitz, R.

R. Eisenschitz and F. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Z. Physik,  60491–527 (1930).
[Crossref]

Elazar, J.

Failache, H.

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

Fichet, M.

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

Fischer, A.

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

Folman, R.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Franzen, S.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

S. Franzen, “Surface plasmon polaritons and plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces.” Science 305, 847–848, (2004).
[Crossref] [PubMed]

Ghanbari, S.

S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
[Crossref]

Greffet, J. J.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

Grynberg, G.

C. Cohen-Tannoudji, J. Doupont-Roc, and G. Grynberg. Atom-Photon Interactions. Wiley-VCH, Weinheim (2004).

Hannaford, P.

S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
[Crossref]

Hänsch, T.

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

Heavens, O. S.

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Henkel, C.

C. Henkel, B. Power, and F. Sols, “New light on cavity QED with ultracold atoms,” J. Phys.: Conf. Series 19, 34–39 (2005).
[Crossref]

Hessmo, B.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Hinds, E. A.

M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
[Crossref]

Hollberg, L.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

Hunger, D.

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Volino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–76 (1977).
[Crossref]

James, M.

L. Bouten, R. van Handel, and M. James, “An introdution to quantum filtering,” SIAM J. Control Optim.,  46, 2199–2241, (2007).
[Crossref]

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

Jun, Y. C.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
[Crossref]

Kekatpure, R. D.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
[Crossref]

Ketterle, W.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Kieu, T. D.

S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
[Crossref]

Kimble, H. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

H. Mabuchi and H. J. Kimble, “Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator.” Opt. Lett. 19, 749–751 (1994).
[Crossref] [PubMed]

Kishimoto, T.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Kitching, J.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

Kitson, S.

W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
[Crossref]

Knappe, S.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

Krüger, P.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Labeyrie, G.

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

Landragin, A.

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

Lassailly, Y.

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

Lee, C.

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

Lev, B.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Liew, L.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

Lifshitz, E.

I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, “General theory of van der Waals’ forces,” Sov. Phys. Uspekhi 4, 153–176 (1961).
[Crossref]

Lindgård, A.

A. Lindgård and S. E. Nielsen, “Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I,” Atomic Data and Nuclear Data Tables 19, 533–633 (1977).

Loncar, M.

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

London, F.

R. Eisenschitz and F. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Z. Physik,  60491–527 (1930).
[Crossref]

Losego, M.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Mabuchi, H.

R. van Handel and H. Mabuchi, “Quantum projection filter for a highly non-linear model in cavity QED,” J. Opt. B: Quantum Semiclass. Opt.,  vol. 7, pp. S226–S236, 2005.
[Crossref]

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

H. Mabuchi and H. J. Kimble, “Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator.” Opt. Lett. 19, 749–751 (1994).
[Crossref] [PubMed]

Maier, T.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Majewski, M.

Maria, J.-P.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

Marquier, F.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces.” Science 305, 847–848, (2004).
[Crossref] [PubMed]

Metz, J.

M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
[Crossref]

Moreland, J.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

Nielsen, S. E.

A. Lindgård and S. E. Nielsen, “Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I,” Atomic Data and Nuclear Data Tables 19, 533–633 (1977).

Oria, M.

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

Ostby, E. P.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Painter, O.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Parkins, A. S.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

Pasquini, T.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Pasquini, T. A.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces.” Science 305, 847–848, (2004).
[Crossref] [PubMed]

Pitaevshkii, L.

I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, “General theory of van der Waals’ forces,” Sov. Phys. Uspekhi 4, 153–176 (1961).
[Crossref]

Power, B.

C. Henkel, B. Power, and F. Sols, “New light on cavity QED with ultracold atoms,” J. Phys.: Conf. Series 19, 34–39 (2005).
[Crossref]

Preist, T.

W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
[Crossref]

Prentiss, M.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Preskill, J.

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Pritchard, D.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Purdy, T. P.

T. P. Purdy and D. M. Stamper-Kurn, “Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization,” Appl. Phys. B 90, 401–405 (2008).
[Crossref]

Rahmat, G.

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

Rakic, A. D.

Reichel, J.

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

Rhodes, C.

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

Roukes, M.

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Saba, M.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Saltiel, S.

S. Saltiel, D. Bloch, and M. Ducloy, “A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom,” Opt. Comm. 265, 220–233 (2006).
[Crossref]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

Sambles, J.

W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
[Crossref]

Sanner, C.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Saravanan, R.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Scherer, A.

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Schirotzek, A.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Schmiedmayer, J.

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

Schwindt, P.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

Segal, S.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Shah, V.

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

Shin, Y.

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

Sidorov, A.

S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
[Crossref]

Sipe, J. E.

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface II,” Phys. Rev. A 32, 2030–2043 (1985).
[Crossref] [PubMed]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface,” Phys. Rev. A 30, 1185–1193 (1984).
[Crossref]

J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981).
[Crossref]

Sols, F.

C. Henkel, B. Power, and F. Sols, “New light on cavity QED with ultracold atoms,” J. Phys.: Conf. Series 19, 34–39 (2005).
[Crossref]

Srinivasan, K.

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

Stamper-Kurn, D. M.

T. P. Purdy and D. M. Stamper-Kurn, “Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization,” Appl. Phys. B 90, 401–405 (2008).
[Crossref]

Steck, D.

D. Steck, “Alkali D line data,” http://steck.us/alkalidata/.

Sugar, J.

C. Corliss and J. Sugar, “Energy levels of potassium, KI through KXIX,” J. Phys. Chem. Ref. Data,  8, 1109–1145 (1979).
[Crossref]

Treutlein, P.

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

Trupke, M.

M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
[Crossref]

Vahala, K. J.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

van Handel, R.

L. Bouten, R. van Handel, and M. James, “An introdution to quantum filtering,” SIAM J. Control Optim.,  46, 2199–2241, (2007).
[Crossref]

R. van Handel and H. Mabuchi, “Quantum projection filter for a highly non-linear model in cavity QED,” J. Opt. B: Quantum Semiclass. Opt.,  vol. 7, pp. S226–S236, 2005.
[Crossref]

Vansteenkiste, N.

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

Volino, P.

E. Arimondo, M. Inguscio, and P. Volino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–76 (1977).
[Crossref]

Vuckovic, J.

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Wang, Y.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Westbrook, C.

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

White, J. S.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
[Crossref]

Wu, S.

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Wylie, J. M.

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface II,” Phys. Rev. A 32, 2030–2043 (1985).
[Crossref] [PubMed]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface,” Phys. Rev. A 30, 1185–1193 (1984).
[Crossref]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

A chip-scale atomic clock based on 87Rb with improved frequency stability (1)

S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, “A chip-scale atomic clock based on 87Rb with improved frequency stability,” Opt. Express,  131249–1253 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

T. P. Purdy and D. M. Stamper-Kurn, “Integrating cavity quantum electrodynamics and ultracold-atom chips with on-chip dielectric mirrors and temperature stabilization,” Appl. Phys. B 90, 401–405 (2008).
[Crossref]

Appl. Phys. Lett. (2)

B. Lev, Y. Lassailly, C. Lee, A. Scherer, and H. Mabuchi, “Atom mirror etched from a hard drive,” Appl. Phys. Lett. 83, 395 (2003).
[Crossref]

P. Schwindt, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Chip-scale atomic magnetometer.” Appl. Phys. Lett. 856409 (2004).
[Crossref]

Atomic Data and Nuclear Data Tables (1)

A. Lindgård and S. E. Nielsen, “Transition probabilities for the alkali isoelectronic sequences Li I, Na I, K I, Rb I, Cs I, Fr I,” Atomic Data and Nuclear Data Tables 19, 533–633 (1977).

Eur. Phys. J. D (1)

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: an experimental study via stepwise selective reflection spectroscopy,” Eur. Phys. J. D 23, 237–255 (2003).
[Crossref]

J. Appl. Phys. (1)

C. Rhodes, M. Cerruti, A. Efremenko, M. Losego, D. Aspnes, J.-P. Maria, and S. Franzen, “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J. Appl. Phys. 103, 093108 (2008).
[Crossref]

J. Mod. Opt. (1)

M. Trupke, J. Metz, A. Beige, and E. A. Hinds, “Towards quantum computing with single atoms and optical cavities on atom chips,” J. Mod. Opt. 54, 1639–1655 (2007).
[Crossref]

J. Opt. B: Quantum Semiclass. Opt. (1)

R. van Handel and H. Mabuchi, “Quantum projection filter for a highly non-linear model in cavity QED,” J. Opt. B: Quantum Semiclass. Opt.,  vol. 7, pp. S226–S236, 2005.
[Crossref]

J. Opt. Soc. Am B (1)

J. Dalibard and C Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” J. Opt. Soc. Am B 62023–2045 (1989).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B: At. Mol. Opt. Phys. 39, 847–860 (2006).
[Crossref]

J. Phys. Chem. C (1)

S. Franzen, “Surface plasmon polaritons and plasma absorption in indium tin oxide compared to silver and gold,” J. Phys. Chem. C 112, 6027–6032 (2008).
[Crossref]

J. Phys. Chem. Ref. Data (1)

C. Corliss and J. Sugar, “Energy levels of potassium, KI through KXIX,” J. Phys. Chem. Ref. Data,  8, 1109–1145 (1979).
[Crossref]

J. Phys. II France (1)

M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, “High resolution selective reflection spectroscopy as a probe of long-range surface interaction: measurement of the surface van der Waals attraction exerted on excited Cs atoms,” J. Phys. II France 2, 631–657 (1992).
[Crossref]

J. Phys.: Conf. Series (1)

C. Henkel, B. Power, and F. Sols, “New light on cavity QED with ultracold atoms,” J. Phys.: Conf. Series 19, 34–39 (2005).
[Crossref]

Nanotechnology (1)

B. Lev, K. Srinivasan, P. Barclay, O. Painter, and H. Mabuchi, “Feasibility of detecting single atoms using photonic bandgap cavities” Nanotechnology 15, S556S561, (2004).
[Crossref]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots.” Nature,  450, 402–406, (2007).
[Crossref] [PubMed]

Opt. Comm. (2)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field.” Opt. Comm. 237, 379–388 (2004).
[Crossref]

S. Saltiel, D. Bloch, and M. Ducloy, “A tabulation and critical analysis of the wavelength- dependent dielectric image coefficient for the interaction excerted by a surface onto a neighbouring excited atom,” Opt. Comm. 265, 220–233 (2006).
[Crossref]

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons on thin films.” Phys. Rev. 182, 539–554, (1969).
[Crossref]

Phys. Rev. A (2)

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface,” Phys. Rev. A 30, 1185–1193 (1984).
[Crossref]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near and interface II,” Phys. Rev. A 32, 2030–2043 (1985).
[Crossref] [PubMed]

Phys. Rev. B (1)

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures.” Phys. Rev. B,  78, 153111, (2008).
[Crossref]

Phys. Rev. B. (1)

W. L. Barnes, T. Preist, S. Kitson, and J. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings.” Phys. Rev. B. 546227–6244, (1996).
[Crossref]

Phys. Rev. Lett. (7)

A. Landragin, J.-Y. Courtois, G. Labeyrie, N. Vansteenkiste, C. Westbrook, and A. Aspect, “Measurement of the van der Waals force in an atomic mirror,” Phys. Rev. Lett. 77, 1464–1467 (1996).
[Crossref] [PubMed]

T. A. Pasquini, T. Pasquini, Y. Shin, C. Sanner, M. Saba, A. Schirotzek, D. Pritchard, and W. Ketterle, “Quantum reflection from a solid surface at normal incidence,” Phys. Rev. Lett. 93223201, (2004).
[Crossref] [PubMed]

H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, “Resonant van der Waals repulsion between excited Cs atoms and sapphire surface,” Phys. Rev. Lett. 83, 5467–5470 (1999).
[Crossref]

H. Failache, S. Saltiel, A. Fischer, D. Bloch, and M. Ducloy, “Resonant quenching of gas-phase Cs atoms induced by surface polaritons,” Phys. Rev. Lett. 88, 243603 (2002).
[Crossref] [PubMed]

R. Folman, P. Krüger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, “Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips,” Phys. Rev. Lett. 84, 4749–4752 (2000).
[Crossref] [PubMed]

P. Treutlein, D. Hunger, S. Camerer, T. Hänsch, and J. Reichel, “Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip.” Phys. Rev. Lett. 99140403, (2007).
[Crossref] [PubMed]

Y. Wang, D. Anderson, V. Bright, E. Cornell, Q. Diot, T. Kishimoto, M. Prentiss, R. Saravanan, S. Segal, and S. Wu, “Atom Michelson interferometer on a chip using a Bose-Einstein condensate,” Phys. Rev. Lett. 94, 090405 (2005).
[Crossref] [PubMed]

Quantum Information and Computation (1)

H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, and A. Scherer, “Quantum networks based on cavity QED” Quantum Information and Computation,  1, 7–12 (2001).

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, and P. Volino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Rev. Mod. Phys. 49, 31–76 (1977).
[Crossref]

Science (2)

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces.” Science 305, 847–848, (2004).
[Crossref] [PubMed]

SIAM J. Control Optim. (1)

L. Bouten, R. van Handel, and M. James, “An introdution to quantum filtering,” SIAM J. Control Optim.,  46, 2199–2241, (2007).
[Crossref]

Sov. Phys. Uspekhi (1)

I. E. Dzyaloshinskii, E. Lifshitz, and L. Pitaevshkii, “General theory of van der Waals’ forces,” Sov. Phys. Uspekhi 4, 153–176 (1961).
[Crossref]

Surf. Sci. (1)

J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105, 489–504 (1981).
[Crossref]

Z. Physik (1)

R. Eisenschitz and F. London, “Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften,” Z. Physik,  60491–527 (1930).
[Crossref]

Other (4)

C. Cohen-Tannoudji, J. Doupont-Roc, and G. Grynberg. Atom-Photon Interactions. Wiley-VCH, Weinheim (2004).

E. Palik (Ed.), Optical Handbook of the Optical Constants of Solids, Academic Press, New York, 3 volumes (1998).

H. J. Charmichael, An Open Systems Approach to Quantum Optics, (Springer-Verlag, Berlin, 1993).

D. Steck, “Alkali D line data,” http://steck.us/alkalidata/.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The assumed geometry of an oriented atomic dipole in vacuum at height z above a planar, transfer region interface that separates an underlying bulk substrate with dielectric constant ε 1 from the vacuum. Adapted from [21].

Fig. 2.
Fig. 2.

Left: diagram of a typical optical atom mirror, as described in section 3. Right: the 39K fine structure energy levels relevant to the example in section 4.

Fig. 3.
Fig. 3.

Left: effective, steady state optical potentials as a function of 39K-surface separation for both ITO and (dispersionless) ITO* materials with {Ω11,κ 12,Δ2}/2π={100MHz,50MHz, (767nm)-1,100MHz,0MHz} and atomic parameters from tables 1 and 2. Right: steady state atomic level populations for the same.

Fig. 4.
Fig. 4.

Left: eigenvalues of the force operator as a function of separation for the ITO and ITO* systems depicted in firgure 3. Right: steady state atomic populations in the (position-dependent) force eigenbasis for the same.

Fig. 5.
Fig. 5.

Quantum trajectory simulations of 39K incident on the optical potentials represented in Fig. 3 after falling from a height of 1mm. The left (right) graph depicts 100 trajectories of the atoms falling towards ITO (ITO*) surfaces. The highlighted green and red trajectories have the median reflected and absorbed escape times, respectively. The ITO potential reflected 88% of the atoms, while the ITO* potential reflected only 7%.

Fig. 6.
Fig. 6.

A .5µs slice of a representative ITO trajectory. Left: the instantaneous force eigen-state populations ηii as a function of time. Right: the expected force on the atom as a function of time. Purple and cyan lines indicate different types of photon counting events in the trajectory.

Fig. 7.
Fig. 7.

Thick lines: quasi-mean ηii from a single quantum trajectory as a function of separation. Solid (dashed) lines indicate the incident (reflected) portions of the trajectory. Thin lines: steady-state ηii from Fig. 4.

Fig. 8.
Fig. 8.

Left: effective, steady state optical potentials with {Ω11,κ 122}/2π={100MHz,50MHz, (767nm)-1,100MHz,-3MHz} that exhibit a near field potential minimum. Right: 100 quantum trajectory simulations for 39K atoms initially at rest in the 39K-ITO potential minimum. The highlighted green and red trajectories have the median reflected and absorbed escape times, respectively.

Tables (2)

Tables Icon

Table 1. Calculation of the transition dipole strengths and image factors for the 4S 1/2, 4P 3/2, and 3D 5/2 levels of neutral 39 K and ITO. Data taken from [30, 28, 31].

Tables Icon

Table 2. Total van der Waals energy shifts and enhanced decay rates for 39K, ITO, and ITO* as determined by Eq. (18) and Eq. (19), and table 1.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Hi=μ·D,
δEa=h̅1PΣB,N,n p (B)DαBNDβNBμαanμβna(ωNωB)+(ωnωa)
Rna=2πh̅ΣB,Np(B)n,Nμ.Da,B2δ((ωNωB)+(ωmωa)).
G˜αβ(t)=ih̅1[Dα(t),Dβ(0)]Θ(t)
α˜αβa(t)=ih̅1a[μα(t),μβ(0)]aΘ(t),
δEa=δEavf+δEar
=h̅2π0dζGαβ(iζ)ααβa(iζ)
ΣnμαanμβnaReGαβ(ωan)Θ(ωan)
Rna=2h̅μαanμβnaImGαβ(ωan)Θ(ωan)
ααβa(ω)=2h̅ Σn ωnaμαanμβnaωna2ω2 ,
Gαβ(ω)=iω˜22π dκW0(ŝαŝβRs+p̂α0+p̂β0Rp)exp(2iW0z)
Gzz(ω)=2Gxx(ω)=2Gyy(ω)
=14z3ε1(ω)1ε1(ω)+1
εD(ω)=1ωp2ω(ω+iγ)
Udh̅Ω024Δe2κzz
UvdW ~ Ω024Δ2 δ Eer +δ Egvf ,
ρ˙= (ρ)
(ρ)=i[ρ,H]+Σa,nDna(ρ)
H=12(Σa,nΩanσnaΣaΔaσaa)+h.c.
Dan(ρ)=Rnatot(σnaρσna12{σnaσna,ρ})
Ueff(rCM)=rCMdrTr(δH(r)δrρss(r)).
h̅23c2kBm Σa,n ωna2 Rnatot Tr (σaaρss(rCM))
Isat=h̅Rnafsωna312πc2 2Ja+12Jn+1 .
dψ={iHdt+Σa,n((σna1)dQna12Rnatotσnaσnadt)} ψ
δEa=Σnμan2+μzan216z3 (2π0dζε1(iζ)1ε1(iζ)+1ωnaωna2+ζ2+2Reε1(ωan)1ε1(ωan)+1Θ(ωan))
Σn Man (Δnavf+Δnar)z3
Rna=μan2+μzan216h̅z3 4 Im ε1(ωan)1ε1(ωan)+1 Θ (ωan)h̅1Manrnaz3.
μan2+μzan2=h̅R{n,a}fs(cωan)3(1+2JnJa2Ja+1Θ(ωna))
ε1(ω)=εωp2ω(ω+iγ)

Metrics