Abstract

A relative displacement between the grid points of optical fields and those of phase screens may occur in the simulation of light propagation through the turbulent atmosphere. A statistical interpolator is proposed to solve this problem in this paper. It is evaluated by the phase structure function and numerical experiments of light propagation through atmospheric turbulence with/without adaptive optics (AO) and it is also compared with the well-known linear interpolator under the same condition. Results of the phase structure function show that the statistical interpolator is more accurate in comparison with the linear one, especially in the high frequency region. More importantly, the long-exposure results of light propagation through the turbulent atmosphere with/without AO also show that the statistical interpolator is more accurate and reliable than the linear one.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
    [CrossRef]
  2. H.-X. Yan, S.-S. Li, D.-L. Zhang, and S. Chen, “Numerical simulation of an adaptive optics system with laser propagation in the atmosphere,” Appl. Opt. 39(18), 3023–3031 (2000).
    [CrossRef]
  3. L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
    [CrossRef]
  4. F. Dios, J. Recolons, A. Rodríguez, and O. Batet, “Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens,” Opt. Express 16(3), 2206–2220 (2008).
    [CrossRef]
  5. H.-X Yan, Han-Ling Wu, Shu-Shan Li and She Chen, “Cone effect in astronomical adaptive optics system investigated by a pure numerical simulation,” Proc. SPIE 5903, 5903OU1–12 (2005).
  6. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2220, 372–383 (1994).
  7. V. Sriram and D. Kearney, “An ultra fast Kolmogorov phase screen generator suitable for parallel implementation,” Opt. Express 15(21), 13709–13714 (2007).
    [CrossRef]
  8. A. Beghi, A. Cenedese, and A. Masiero, “Stochastic realization approach to the efficient simulation of phase screens,” J. Opt. Soc. Am. A 25(2), 515–525 (2008).
    [CrossRef]
  9. H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35(9), 1561–1565 (1996).
    [CrossRef]
  10. H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002).
  11. B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997).
  12. G. Sedmak, “Performance analysis of and compensation for aspect-ratio effects of fast-fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37(21), 4605–4613 (1998).
    [CrossRef]
  13. M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadamer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34(20), 4037–4051 (1995).
    [CrossRef]
  14. H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006).
  15. F. Assémat, R. W. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14(3), 988–999 (2006).
    [CrossRef]
  16. D. L. Fried and T. Clark, “Extruding Kolmogorov-type phase screen ribbons,” J. Opt. Soc. Am. A 25(2), 463–468 (2008).
    [CrossRef]
  17. C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990).
    [CrossRef]
  18. B. Formwalt and S. Cain, “Optimized phase screen modeling for optical turbulence,” Appl. Opt. 45(22), 5657–5668 (2006).
    [CrossRef]
  19. R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992).
    [CrossRef]
  20. C. M. Harding, R. A. Johnston, and R. G. Lane, “Fast simulation of a kolmogorov phase screen,” Appl. Opt. 38(11), 2161–2170 (1999).
    [CrossRef]
  21. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, Washington, 2005).
  22. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, Boston, 1997).

2008 (3)

2007 (1)

2006 (4)

F. Assémat, R. W. Wilson, and E. Gendron, “Method for simulating infinitely long and non stationary phase screens with optimized memory storage,” Opt. Express 14(3), 988–999 (2006).
[CrossRef]

B. Formwalt and S. Cain, “Optimized phase screen modeling for optical turbulence,” Appl. Opt. 45(22), 5657–5668 (2006).
[CrossRef]

L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
[CrossRef]

H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006).

2002 (1)

H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002).

2000 (1)

1999 (1)

1998 (1)

1997 (1)

B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997).

1996 (1)

1995 (1)

1994 (1)

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2220, 372–383 (1994).

1992 (1)

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992).
[CrossRef]

1990 (1)

C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990).
[CrossRef]

1976 (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[CrossRef]

Andrews, L. C.

L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
[CrossRef]

Assémat, F.

Batet, O.

Beghi, A.

Cain, S.

Cenedese, A.

Chen, S.

H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006).

H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002).

H.-X. Yan, S.-S. Li, D.-L. Zhang, and S. Chen, “Numerical simulation of an adaptive optics system with laser propagation in the atmosphere,” Appl. Opt. 39(18), 3023–3031 (2000).
[CrossRef]

Clark, T.

Dainty, J. C.

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992).
[CrossRef]

Dios, F.

Feit, M. D.

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[CrossRef]

Fleck, J. A.

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[CrossRef]

Formwalt, B.

Fried, D. L.

Gardner, C. S.

C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990).
[CrossRef]

Gavel, D. T.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2220, 372–383 (1994).

Gendron, E.

Glindemann, A.

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992).
[CrossRef]

Harding, C. M.

Jakobsson, H.

Johansson, E. M.

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2220, 372–383 (1994).

Johnston, R. A.

Kearney, D.

Lane, R. G.

C. M. Harding, R. A. Johnston, and R. G. Lane, “Fast simulation of a kolmogorov phase screen,” Appl. Opt. 38(11), 2161–2170 (1999).
[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992).
[CrossRef]

Li, S.-S.

H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006).

H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002).

H.-X. Yan, S.-S. Li, D.-L. Zhang, and S. Chen, “Numerical simulation of an adaptive optics system with laser propagation in the atmosphere,” Appl. Opt. 39(18), 3023–3031 (2000).
[CrossRef]

Masiero, A.

Montera, D.

Morris, J. R.

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[CrossRef]

Parenti, R. R.

L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
[CrossRef]

Philips, R. L.

L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
[CrossRef]

Recolons, J.

Rhoadamer, T. A.

Rodríguez, A.

Roggemann, M. C.

Sasiela, R. J.

L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
[CrossRef]

Sedmak, G.

Sriram, V.

Thompson, L. A.

C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990).
[CrossRef]

Welsh, B. M.

B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997).

M. C. Roggemann, B. M. Welsh, D. Montera, and T. A. Rhoadamer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34(20), 4037–4051 (1995).
[CrossRef]

C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990).
[CrossRef]

Wilson, R. W.

Yan, H.-X.

H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006).

H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002).

H.-X. Yan, S.-S. Li, D.-L. Zhang, and S. Chen, “Numerical simulation of an adaptive optics system with laser propagation in the atmosphere,” Appl. Opt. 39(18), 3023–3031 (2000).
[CrossRef]

Zhang, D.-L.

Appl. Opt. (6)

Appl. Phys. (Berl.) (1)

J. A. Fleck, J. R. Morris, and M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. (Berl.) 10(2), 129–160 (1976).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

L. C. Andrews, R. L. Philips, R. J. Sasiela, and R. R. Parenti, “Strehl ratio and scintillation theory for uplink Gaussian-beam waves: beam wander effects,” Opt. Eng. 45(7), 076001–1 (2006).
[CrossRef]

Opt. Express (3)

Proc. IEEE (1)

C. S. Gardner, B. M. Welsh, and L. A. Thompson, “Design and performance analysis of adaptive optical telescopes using laser guide stars,” Proc. IEEE 78(11), 1721–1743 (1990).
[CrossRef]

Proc. SPIE (4)

E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2220, 372–383 (1994).

H.-X. Yan, S.-S. Li, and S. Chen, “Numerical simulation investigations of the dynamic control process and frequency response characteristics in an adaptive optics system,” Proc. SPIE 4494, 156–166 (2002).

B. M. Welsh, “Fourier-series-based atmospheric phase screen generator for simulating anisoplanatic geometries and temporal evolution,” Proc. SPIE 3125, 327–338 (1997).

H.-X. Yan, S. Chen, and S.-S. Li, “Turbulent phase screens generated by covariance approach and their application in numerical simulation of atmospheric propagation of laser beam,” Proc. SPIE 6346, 634628 (2006).

Waves Random Media (1)

R. G. Lane, A. Glindemann, and J. C. Dainty, “Simulation of Kolmogorov phase screen,” Waves Random Media 2(3), 209–224 (1992).
[CrossRef]

Other (3)

L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE Press, Washington, 2005).

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic Press, Boston, 1997).

H.-X Yan, Han-Ling Wu, Shu-Shan Li and She Chen, “Cone effect in astronomical adaptive optics system investigated by a pure numerical simulation,” Proc. SPIE 5903, 5903OU1–12 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics