Abstract

We observed the temporal development of surface waves and investigated their power propagation loss in typical photorefractive polymer films sandwiched between ITO glass substrates. We found that amplified scattered waves generated in a pumped region started to develop into surface waves from a point where they reached the substrate through the self-bending effect. The surface waves propagated over a distance of 1.7 mm, thereby confining the power to a region at a distance of 30 microns from the substrate. Considerable propagation power loss of the surface waves was observed at a low pumping power of the beam; however, the power loss decreased considerably when the beam had high power.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C-Golomb, “Photorefractive surface wave solitons,” Opt. Lett. 20(20), 2075–2077 (1995).
    [CrossRef]
  2. A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67(22), 3242–3244 (1995).
    [CrossRef]
  3. J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
    [CrossRef] [PubMed]
  4. E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B 15(7), 2023–2031 (1998).
    [CrossRef]
  5. I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999).
    [CrossRef]
  6. T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
    [CrossRef]
  7. V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001).
    [CrossRef]
  8. O. V. Lyubomudrov and V. V. Shkunov, “Self-bending specklons in photorefractive crystals,” J. Opt. Soc. Am. B 11(8), 1403–1408 (1994).
    [CrossRef]
  9. P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
    [CrossRef]
  10. A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B 13(11), 2536–2543 (1996).
    [CrossRef]
  11. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  12. K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150(1-6), 205–209 (1998).
    [CrossRef]
  13. A. G-Jepsen, “C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
    [CrossRef]
  14. T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
    [CrossRef]
  15. T. Sassa, T. Muto, and T. Wada, “Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure,” J. Opt. Soc. Am. B 21(6), 1255–1261 (2004).
    [CrossRef]
  16. A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
    [CrossRef]
  17. L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford, New York, 1996), Chap. 10, pp. 320–322.

2006

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

2005

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

2004

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

T. Sassa, T. Muto, and T. Wada, “Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure,” J. Opt. Soc. Am. B 21(6), 1255–1261 (2004).
[CrossRef]

2001

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001).
[CrossRef]

1999

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999).
[CrossRef]

1998

A. G-Jepsen, “C. L. Thompson, R. J. Twieg, and W. E. Moerner, “Amplified scattering in a high-gain photorefractive polymer,” J. Opt. Soc. Am. B 15, 901–904 (1998).
[CrossRef]

E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B 15(7), 2023–2031 (1998).
[CrossRef]

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150(1-6), 205–209 (1998).
[CrossRef]

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

1996

1995

M. C-Golomb, “Photorefractive surface wave solitons,” Opt. Lett. 20(20), 2075–2077 (1995).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67(22), 3242–3244 (1995).
[CrossRef]

J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

1994

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

O. V. Lyubomudrov and V. V. Shkunov, “Self-bending specklons in photorefractive crystals,” J. Opt. Soc. Am. B 11(8), 1403–1408 (1994).
[CrossRef]

G-Jepsen, A.

Aleshkevich, V.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001).
[CrossRef]

Bittner, R.

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150(1-6), 205–209 (1998).
[CrossRef]

C-Golomb, M.

Dai, J.-H.

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999).
[CrossRef]

Feng, L.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Fujihara, T.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

Jaaskelainen, T.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B 15(7), 2023–2031 (1998).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67(22), 3242–3244 (1995).
[CrossRef]

Jia, F.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Kamshilin, A. A.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

E. Raita, A. A. Kamshilin, and T. Jaaskelainen, “Fast mutually pumped phase conjugation induced by a transient photorefractive surface wave,” J. Opt. Soc. Am. B 15(7), 2023–2031 (1998).
[CrossRef]

A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B 13(11), 2536–2543 (1996).
[CrossRef]

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67(22), 3242–3244 (1995).
[CrossRef]

Kang, H. Z.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Kartashov, Y.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001).
[CrossRef]

Khomenko, A. V.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

A. A. Kamshilin, E. Raita, and A. V. Khomenko, “Intensity redistribution in a thin photorefractive crystal caused by strong fanning effect and internal reflections,” J. Opt. Soc. Am. B 13(11), 2536–2543 (1996).
[CrossRef]

Lee, C. H.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999).
[CrossRef]

Lu, Y. Z.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Lyubomudrov, O. V.

Meerholz, K.

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150(1-6), 205–209 (1998).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Muto, T.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

T. Sassa, T. Muto, and T. Wada, “Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure,” J. Opt. Soc. Am. B 21(6), 1255–1261 (2004).
[CrossRef]

Nardin, Y. D.

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150(1-6), 205–209 (1998).
[CrossRef]

Nippolainen, E.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Prokofiev, V. V.

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67(22), 3242–3244 (1995).
[CrossRef]

Quirino, G. S.

J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Raita, E.

Ren, X. K.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Sanchez-Mondragon, J. J.

J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Sassa, T.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

T. Sassa, T. Muto, and T. Wada, “Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure,” J. Opt. Soc. Am. B 21(6), 1255–1261 (2004).
[CrossRef]

Segundo, A. Z.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

Shao, W. W.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Shkunov, V. V.

Smolyaninov, I. I.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999).
[CrossRef]

Stepanov, S.

J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Takeda, Y.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

Umegaki, S.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

Vysloukh, V.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001).
[CrossRef]

Wada, T.

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

T. Sassa, T. Muto, and T. Wada, “Enhanced photorefractive two-beam coupling in low-Tg polymeric materials with a new device structure,” J. Opt. Soc. Am. B 21(6), 1255–1261 (2004).
[CrossRef]

Wang, B. H.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Wang, P.-Y.

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

Xie, P.

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

Xu, J. J.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Yang, J.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Zhang, C. P.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Zhang, H.-J.

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

Zhang, T. H.

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Appl. Phys. Lett.

A. A. Kamshilin, E. Raita, V. V. Prokofiev, and T. Jaaskelainen, “Nonlinear self-channeling of a laser beam at the surface of a photorefractive fiber,” Appl. Phys. Lett. 67(22), 3242–3244 (1995).
[CrossRef]

T. Sassa, T. Muto, T. Wada, Y. Takeda, T. Fujihara, and S. Umegaki, “Strongly electric-field-dependent spatial properties of fanning beam in polymeric medium,” Appl. Phys. Lett. 86(8), 84103 (2005).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

J. Appl. Phys.

P. Xie, J.-H. Dai, P.-Y. Wang, H.-J. Zhang, and P.-Y. Wang, “A two-dimensional theory and propagation of beam fanning in photorefractive crystals,” J. Appl. Phys. 75(4), 1891–1894 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. V. Khomenko, E. Nippolainen, A. A. Kamshilin, A. Z. Segundo, and T. Jaaskelainen, “Leaky photorefractive surface waves in Bi12TiO29 and Bi12SiO20 crystals,” Opt. Commun. 150(1-6), 175–179 (1998).
[CrossRef]

K. Meerholz, R. Bittner, and Y. D. Nardin, “Field asymmetry of the dynamic gain coefficient in organic photorefractive devices,” Opt. Commun. 150(1-6), 205–209 (1998).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

V. Aleshkevich, V. Vysloukh, and Y. Kartashov, “Localized surface waves at the interface between the linear dielectric and photorefractive medium with drift and diffusion nonlinearity,” Opt. Quantum Electron. 33(12), 1205–1221 (2001).
[CrossRef]

Phys. Rev. A

J. J. Sanchez-Mondragon, S. Stepanov, S. Stepanov, and G. S. Quirino, “Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity,” Phys. Rev. A 51(2), 1571–1577 (1995).
[CrossRef] [PubMed]

Phys. Rev. B

T. H. Zhang, J. Yang, H. Z. Kang, L. Feng, J. J. Xu, C. P. Zhang, X. K. Ren, B. H. Wang, Y. Z. Lu, F. Jia, and W. W. Shao, “Surface second-harmonic generation in Sr0.6Ba0.4NbO3 with a nonlinear diffusion mechanism,” Phys. Rev. B 73(15), 153402 (2006).
[CrossRef]

Phys. Rev. Lett.

I. I. Smolyaninov, C. H. Lee, and C. C. Davis, “Giant enhancement of surface second harmonic generation in BaTiO3 due to photorefractive surface wave excitation,” Phys. Rev. Lett. 83(12), 2429–2432 (1999).
[CrossRef]

Other

L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Oxford, New York, 1996), Chap. 10, pp. 320–322.

Supplementary Material (1)

» Media 1: MPG (3413 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of experimental setup. The inset (left) shows pictures captured by CCD #1 to measure the propagation distance L. The two dashed lines show edges of the thin rectanguar-cut substrate having a width of 5 mm. The other inset (right) shows top- and side-view images of the sample cell as well as the direction of the applied electric field. The pumped area was 0.7 × 0.2 mm.

Fig. 2.
Fig. 2.

Temporal changes of intensity profiles of amplified scattered waves for (a) L = 0.7 mm, (b) L = 1.1 mm, and (c) L = 0 mm. The dotted line shows the intensity profile of an end-face image of the sample cell, showing the position of the polymer layer from x = 302 to x = 332. Regions of (I), (II) and (III) correspond to the bottom substrate, polymer layer and top substrate, respectively. Image resolution through CCD #2 was 3 μm/pixel.

Fig. 3.
Fig. 3.

Temporal changes of peak width (FWHM) of intensity profile in polymer region and a streak line (Media 1, 2X playback speed).

Fig. 4.
Fig. 4.

Propagation distance dependence of optical power inside polymer after pumping for 70s.

Fig. 5.
Fig. 5.

Pumping power dependence of optical power inside polymer (L = 2.0 mm). The inset shows the intensity profiles in the polymer and the top substrate regions.

Metrics