Abstract

In holographic data storage, it is difficult to retrieve data if the temperature difference between recording and reading exceeds 2 K. To widen this tolerance, a compensation method—adjusting the wavelengths and incident directions of the recording and reading beams—has been proposed. In this paper, for the first time, a method for calculating the recording and reading temperature tolerance using this compensation is introduced. To widen the narrow tolerance, typically ± 10 K, it is effective to increase the coefficient of thermal expansion (CTE) of the substrate or decrease the CTE of the photopolymer. Although reducing the Numerical aperture of the objective lens is also effective, it degrades the recording density.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
    [CrossRef]
  2. M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45(No. 2B), 1297–1304 (2006).
    [CrossRef]
  3. T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, and K. Watanabe, “Tunable blue laser compensates for thermal expansion of the medium in holographic data storage,” Appl. Opt. 46(25), 6263–6272 (2007).
    [CrossRef] [PubMed]
  4. T. Tanaka and K. Watanabe, “Analytical solution to compensate for thermal expansion change in photopolymer volume holograms using a tunable laser,” Appl. Opt. 47(6), 776–783 (2008).
    [CrossRef] [PubMed]
  5. T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, “Tunable blue laser for holographic data storage,” in Proceedings of Optical Data Storage, 215−217 (2006).
  6. S.Yoshida, M. Tanaka, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode hopping detection technique for external cavity laser diodes,” in Proceedings of Optical Data Storage, TD05−168 (2008).
  7. M. Omori, S. Okauchi, H. Kondo, T. Miyata, and N. Mori, “Tunable external cavity blue laser diode for holographic data storage,” in Proceedings of Optical Data Storage, TD05−154 (2008).
  8. C. Moser, L. Ho, and F. Havermeyer, “Single longitudinal mode blue-violet laser for data storage,” in Proceedings of Optical Data Storage, 209−211 (2008).
  9. T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, “Littrow-type external-cavity blue laser for holographic data storage,” Appl. Opt. 46(17), 3583–3592 (2007).
    [CrossRef] [PubMed]
  10. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, 1993) Chap. 2.
  11. A. Hoskins, A. Hill, B. Sissom, C. Stanhope, and K. Curtis, “Temperature compensation strategy for holographic storage,” in Proceedings of Optical Data Storage, 218−220 (2006).

2008 (1)

2007 (2)

2006 (1)

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45(No. 2B), 1297–1304 (2006).
[CrossRef]

1998 (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Bair, H.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Boyd, C.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Dhar, L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Kasegawa, R.

Sako, K.

Samuels, D.

Schilling, M.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Schnoes, M. G.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Sugiki, M.

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45(No. 2B), 1297–1304 (2006).
[CrossRef]

Takahashi, K.

Takeya, M.

Tanaka, T.

Toishi, M.

Watanabe, K.

Wysocki, T. L.

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Dhar, M. G. Schnoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, “Improvement in temperature tolerance of holographic data storage using wavelength tunable laser,” Jpn. J. Appl. Phys. 45(No. 2B), 1297–1304 (2006).
[CrossRef]

Other (6)

T. Tanaka, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, and S. Akao, “Tunable blue laser for holographic data storage,” in Proceedings of Optical Data Storage, 215−217 (2006).

S.Yoshida, M. Tanaka, Y. Nagasaka, T. Saeki, Y. Watanabe, H. Oka, T. Miyake, T. Ueyama, and Y. Kurata, “Mode hopping detection technique for external cavity laser diodes,” in Proceedings of Optical Data Storage, TD05−168 (2008).

M. Omori, S. Okauchi, H. Kondo, T. Miyata, and N. Mori, “Tunable external cavity blue laser diode for holographic data storage,” in Proceedings of Optical Data Storage, TD05−154 (2008).

C. Moser, L. Ho, and F. Havermeyer, “Single longitudinal mode blue-violet laser for data storage,” in Proceedings of Optical Data Storage, 209−211 (2008).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, 1993) Chap. 2.

A. Hoskins, A. Hill, B. Sissom, C. Stanhope, and K. Curtis, “Temperature compensation strategy for holographic storage,” in Proceedings of Optical Data Storage, 218−220 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Two-beam optical setup for (a) recording and (b) reading. The capital Greek letters stand for the beam directions in the photopolymer.

Fig. 2.
Fig. 2.

The correction of the reading beam versus signal beam direction. The parameter is the wavelength of the reading beam. The recording temperature is 25 °C, the recording wavelength is 405 nm, the reading temperature is 35 °C, and the reference beam direction is 0.34 rad in the medium. The other conditions for the calculation are listed in Tables 1, 2, and 3.

Fig. 3.
Fig. 3.

Reading beam versus signal beam direction, and the definition of Ω. The recording temperature is 25 °C, the reading temperature is 45 °C, and the other conditions for the calculation are listed in Tables 1, 2, and 3.

Fig. 4.
Fig. 4.

The extent of the bend, Ω, versus the temperature difference between reading and recording, T 1 - T 0. The parameter is the reference beam direction, the recording temperature is 25 °C, the expansion rate by polymerization is 0, and the other conditions for the calculation are listed in Tables 1, 2, and 3.

Fig. 5.
Fig. 5.

Angle tolerance of the reading beam, Θ, versus the signal beam direction, Ψ0. The parameter is the reference beam direction, Γ0. The photopolymer is 1.0 mm thick, the refractive index of the photopolymer is 1.5 + 5.7 × 10-5sin(Kw), K is the wave number of the grating, and w is the coordinate whose axis is parallel to the grating normal.

Fig. 6.
Fig. 6.

The relationship between the extent of the bend, Ω, and the reading beam angle tolerance, Θ, at the limit of a reading temperature. The solid line represents Ξ1, and the two double dotted lines represent a 0.7 relative diffracted efficiency.

Fig. 7.
Fig. 7.

The extent of the bend, Ω, versus the temperature difference between reading and recording, T 1 - T 0. The parameter is the direction of the reference beam. The expansion rate by polymerization is -1.0 × 10-3. The other conditions for the calculation are listed in Tables 1, 2, and 3.

Fig. 8.
Fig. 8.

Angle tolerance of the reading beam, Θ, versus the photopolymer thickness. -0.34 rad of the signal beam direction is selected as an example. The other conditions for the calculation are listed in Tables 1,2, and 3.

Fig. 9.
Fig. 9.

The readable temperature region when a medium is recorded at various temperatures. The bold lines are the tolerances for reading temperature recorded at temperatures of T w1, T w2, and T w3, and the arrow shows the common temperature for each tolerance.

Fig. 10.
Fig. 10.

Reading beam versus signal beam direction. The N.A. is 0.3, the recording temperature is 25 °C, and the reading temperature is 45 °C. The other conditions are listed in Tables 2 and 3.

Tables (5)

Tables Icon

Table 1. The directions of reference and signal beams at 25 °

Tables Icon

Table 2. Medium parameters

Tables Icon

Table 3. Recording conditions

Tables Icon

Table 4. The reading temperature tolerance of the grating recorded at 25 °C. The substrate is glass, the photopolymer is 1.0 mm thick, and the expansion rate by polymerization is 0.

Tables Icon

Table 5. Two types of temperature tolerances.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Gx=αx(T1T0),
Gz=αz(T1T0)+s ,
Δn=n0ν(T1T0) ,
ΔΞ=(GxGz)sin(Γ0+3Ψ02)2cos(Γ0Ψ02)+(Δλλ0Δnn0Gx+Gz2)tan(Γ0Ψ02).
Ω=Θ0.66+Θ0.4.

Metrics