Abstract

This paper proposes a new design methodology for discrete multi-pumped Raman amplifier. In a multi-objective optimization scenario, in a first step the whole solution-space is inspected by a CW analytical formulation. Then, the most promising solutions are fully investigated by a rigorous numerical treatment and the Raman amplification performance is thus determined by the combination of analytical and numerical approaches. As an application of our methodology we designed an photonic crystal fiber Raman amplifier configuration which provides low ripple, high gain, clear eye opening and a low power penalty. The amplifier configuration also enables to fully compensate the dispersion introduced by a 70-km singlemode fiber in a 10 Gbit/s system. We have successfully obtained a configuration with 8.5 dB average gain over the C-band and 0.71 dB ripple with almost zero eye-penalty using only two pump lasers with relatively low pump power.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Headley, and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (San Diego, CA, Academic Press, 2005).
  2. P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
    [CrossRef]
  3. B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Slope-matched dispersion-compensating photonic crystal fiber," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CPDD3.
    [PubMed]
  4. Z. Yusoff, J. H. Lee, W. Belarti, T. M. Monro, P. C. The, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002).
    [CrossRef]
  5. K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
    [CrossRef]
  6. S. P. N Cani, C. A deFrancisco, D. H Spadoti, V. E. Nascimento, B. H. V Borges, L. C. Calmon, and M. A. Romero, "Requirements for efficient Raman amplification and dispersion compensation using microstructured optical fibers," Fiber Integ. Opt. 26, 255-270 (2007).
    [CrossRef]
  7. J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
    [CrossRef]
  8. K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
    [CrossRef]
  9. D. Mongardien, S. Borne, G. Melin, A. Fleureau, S. Lempereur, E. Burov, S. Maerten, C. Simonneau, and J. P. Hamaide, 2006, "10 Gbs/s WDM operation of a lumped Raman fiber amplifier using highly non-linear Ge-doped photonic crystal fiber," in Proceedings of the European Conference on Optical Communications (ECOC´06), (Cannes, France, 2006), paper PD Th4.2.6.
  10. S. P. Cani, M. Freitas, R. T. Almeida, and L. C. Calmon, "Raman amplifier performance of dispersion compensating fibers," in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoeletronics Conference (IMOC 2003), (Iguazu Falls, Brazil, 2003), pp. 553-558.
  11. P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
    [CrossRef]
  12. M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
    [CrossRef]
  13. X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
    [CrossRef]
  14. B. Neto, A. L. J. Teixeira, N. Wada, and P. S. Andre, "Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers," Opt. Express 15, 17520-17528 (2008).
    [CrossRef]
  15. S. P. Cani, L. C. Calmon, M. J. Pontes, M. R. N. Ribeiro, M. E. V. Segatto, and A.V. T. Cartaxo, "An analytical approximated solution for the gain of broadband Raman amplifiers with multiple counter-pumps," J. Lightwave Technol. 27, 944-951 (2009).
    [CrossRef]
  16. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
    [CrossRef]
  17. S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
    [CrossRef]
  18. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-9 (2004).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, USA, 3rd edition, 2001), Chap.8.
  20. D. Dahan and G. Eisenstein, "Numerical comparision between distributed and discrete amplification in a point-to-point 40 Gbit/s 40-WDM-based transmission system with three different modulation formats," J. Lightwave Technol. 20, 379-388 (2002).
    [CrossRef]
  21. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
    [CrossRef]
  22. M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
    [CrossRef]
  23. Y. Aoki, "Properties of fiber Raman amplifiers and their applicability to digital optical communication systems," J. Lightwave Technol. 6, 1225-1239 (1988).
    [CrossRef]

2009 (1)

2008 (1)

2007 (3)

S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

S. P. N Cani, C. A deFrancisco, D. H Spadoti, V. E. Nascimento, B. H. V Borges, L. C. Calmon, and M. A. Romero, "Requirements for efficient Raman amplification and dispersion compensation using microstructured optical fibers," Fiber Integ. Opt. 26, 255-270 (2007).
[CrossRef]

2006 (1)

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

2005 (2)

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
[CrossRef]

2004 (1)

2003 (1)

P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
[CrossRef]

2002 (2)

2001 (3)

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
[CrossRef]

1999 (1)

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

1998 (1)

P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

1988 (1)

Y. Aoki, "Properties of fiber Raman amplifiers and their applicability to digital optical communication systems," J. Lightwave Technol. 6, 1225-1239 (1988).
[CrossRef]

Achtenhagen, M.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
[CrossRef]

Andre, P. S.

Aoki, Y.

Y. Aoki, "Properties of fiber Raman amplifiers and their applicability to digital optical communication systems," J. Lightwave Technol. 6, 1225-1239 (1988).
[CrossRef]

Ayres Neto, J. B. M.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Belarti, W.

Borges, B. V.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Calmon, L. C.

Cani, S. P.

Cani, S. P. N

S. P. N Cani, C. A deFrancisco, D. H Spadoti, V. E. Nascimento, B. H. V Borges, L. C. Calmon, and M. A. Romero, "Requirements for efficient Raman amplification and dispersion compensation using microstructured optical fibers," Fiber Integ. Opt. 26, 255-270 (2007).
[CrossRef]

Canning, J.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Cartaxo, A.V. T.

Chang, T. G.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
[CrossRef]

Chen, J.

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

Cheng, T. H.

X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
[CrossRef]

Couny, F.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
[CrossRef]

Dahan, D.

De Francisco, C. A.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Digweed-Lyytikainen, K.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Eisenstein, G.

Fukai, C.

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

Gruner-Nielsen, L.

P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

Hansen, P. B.

P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

Hardy, A.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
[CrossRef]

Huang, J.

P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
[CrossRef]

Jacobovitz-Veselka, G.

P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

Jiang, W.

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

Juriollo, A. A.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Kidorf, H.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

Koshiba, M.

S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Kurokawa, K.

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

Lee, J. H.

Li, J.

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

Li, X.

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

Liu, J. M.

P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
[CrossRef]

Lu, C.

X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
[CrossRef]

Ma, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

Mangan, B. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
[CrossRef]

Matsui, T.

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

Monro, T. M.

Nakajima, K.

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-9 (2004).
[CrossRef]

Neto, B.

Nissov, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

Nyman, B.

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
[CrossRef]

Pontes, M. J.

Rabarijaona, E.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

Ribeiro, M. R. N.

Richardson, D. J.

Roberts, P. J.

S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
[CrossRef]

Romero, M. A.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Rosolem, J. B.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Rottwitt, K.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

Sabert, H.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
[CrossRef]

Saitoh, K.

S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Sankawa, I.

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

Sato, K.

Segatto, M. E. V.

Shum, P.

X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
[CrossRef]

Spadoti, D.

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Stentz, A. J.

P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

Tajima, K.

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-9 (2004).
[CrossRef]

Teixeira, A. L. J.

The, P. C.

Varshney, S. K.

S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

Wada, N.

Xiao, P. C.

P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
[CrossRef]

Yan, M.

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

Yusoff, Z.

Zeng, Q. J.

P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
[CrossRef]

Zhou, J.

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-9 (2004).
[CrossRef]

Zhou, X.

X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

M. Achtenhagen, T. G. Chang, B. Nyman, and A. Hardy, "Analysis of a multiple-pump Raman amplifier," Appl. Phys. Lett. 78, 1322-1324 (2001).
[CrossRef]

Electron. Lett. (1)

P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, and A. J. Stentz, "Raman amplification for loss compensation in dispersion compensating fiber modules," Electron. Lett. 34, 1136-1137 (1998).
[CrossRef]

Fiber Integ. Opt. (1)

S. P. N Cani, C. A deFrancisco, D. H Spadoti, V. E. Nascimento, B. H. V Borges, L. C. Calmon, and M. A. Romero, "Requirements for efficient Raman amplification and dispersion compensation using microstructured optical fibers," Fiber Integ. Opt. 26, 255-270 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

K. Nakajima, C. Fukai, K. Kurokawa, K. Tajima, T. Matsui, and I. Sankawa, "Raman amplification characteristics at 850 nm in a silica-based photonic crystal fiber," IEEE Photon. Technol. Lett. 18, 451-453 (2006).
[CrossRef]

P. C. Xiao, Q. J. Zeng, J. Huang, and J. M. Liu, "A new optimal algorithm for multipump sources of distributed fiber Raman amplifier," IEEE Photon. Technol. Lett. 15, 206-208 (2003).
[CrossRef]

M. Yan, J. Chen, W. Jiang, J. Li, J. Chen, and X. Li, "Automatic design scheme for optical fibre Raman amplifiers backward-pumped with multiple laser diode pumps," IEEE Photon. Technol. Lett. 13, 948-950 (2001).
[CrossRef]

X. Zhou, C. Lu, P. Shum, and T. H. Cheng, "A simplified model and optimal design of a multiwavelength backward pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 13, 945-947 (2001).
[CrossRef]

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier," IEEE Photon. Technol. Lett. 11, 530-532 (1999).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Fiber Commun. (1)

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny,  and et al., "Control of dispersion in photonic crystal fibers," J. Opt. Fiber Commun. 2, 435-461, (2005).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

K. Digweed-Lyytikainen, C. A. De Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero. "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microwave Opt. Technol. Lett. 49, 872-874 (2007).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (2)

S. K. Varshney, K. Saitoh, M. Koshiba, and P. J. Roberts, "Analysis of a realistic and idealized dispersion-compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007).
[CrossRef]

J. Zhou, K. Tajima, K. Nakajima, K. Kurokawa, C. Fukai, T. Matsui, and I. Sankawa, "Progress on low loss photonic crystal fibers," Opt. Fiber Technol. 11, 101-110 (2005).
[CrossRef]

Opt. Lett. (1)

Other (5)

C. Headley, and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (San Diego, CA, Academic Press, 2005).

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, "Slope-matched dispersion-compensating photonic crystal fiber," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CPDD3.
[PubMed]

D. Mongardien, S. Borne, G. Melin, A. Fleureau, S. Lempereur, E. Burov, S. Maerten, C. Simonneau, and J. P. Hamaide, 2006, "10 Gbs/s WDM operation of a lumped Raman fiber amplifier using highly non-linear Ge-doped photonic crystal fiber," in Proceedings of the European Conference on Optical Communications (ECOC´06), (Cannes, France, 2006), paper PD Th4.2.6.

S. P. Cani, M. Freitas, R. T. Almeida, and L. C. Calmon, "Raman amplifier performance of dispersion compensating fibers," in Proceedings of SBMO/IEEE MTT-S International Microwave and Optoeletronics Conference (IMOC 2003), (Iguazu Falls, Brazil, 2003), pp. 553-558.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, USA, 3rd edition, 2001), Chap.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Tree diagram showing the relationship among Raman amplifier models.

Fig. 2.
Fig. 2.

The discrete multi-pumped Raman amplifier setup.

Fig. 3.
Fig. 3.

Gain versus ripple obtained with the analytical model for 8000 different configurations of a discrete two counter-propagating pumps Raman amplifier. The pump wavelength, λ P1 and λ P2, vary randomly from 1410 to 1460 nm and the pump powers from 100 to 450 mW. The inset shows the configurations with ripple smaller than 1 dB.

Fig. 4.
Fig. 4.

(a) Gain and (b) OSNR versus the signal wavelength for the discrete counter-propagating multi-pumped DCPCF Raman amplifier. (a) The numbers in the right side represent the input optical power per channel and (b) the PCF attenuation.

Fig. 5.
Fig. 5.

Eye penalty as a function of the signal wavelength for the case presented in Fig 4. Here αPCF = 4, 5 and 6 dB/km, and PS = 0, -5 and -10 dBm/channel.

Tables (2)

Tables Icon

Table I: Schematic algorithm describing the four steps methodology.

Tables Icon

Table II. System parameters.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A±vzdref,vA±vt+j2β2v2A±vt2j6β3vA±vt3=αv2 A±v
+jγv[A±v2+(σ=1Nc2A±σ2)2A±v2] Av±
±A±vμ>vCRμv2ΓA±μ2
±A±vμ<vvμCR2ΓA±μ2
±A±vμ<vvμCR2Γ[1+1exp[h(vμ)kT]1]2NEμ.
dPv±dz=αvPv±±εvPv±±Pv±μ>vCR,μvΓ·(Pμ±+Pμ)
±2NE,vμ>vCR,μvΓ·(Pμ±+Pμ)·TNPv±μ>vvμCR,μvΓ·(Pμ±+Pμ)
Pv±μ>vvμCR,μvΓ4NE,μ·[1+1/(exp[h(μv)kT]1)].
Pρ(z)=Pρ(L)exp[α(Lz)]
exp [ψ>ρ[A(ρ,Ψ)1exp[Λ(z)B(ψ,φ)]B(ψ,φ)]]
exp [ψ>ρ[ρψA(ρ,ψ)1exp[Λ(z)B(ψ,φ)]B(ψ,φ)]] .
G(v,L)=exp[αvL]exp[0L(NpCR,ρvΓPρ(z)dz)].

Metrics