Abstract

Thermally stable highly ytterbium-doped bismuth-oxide-based glasses have been investigated. The absorbance increased linearly with Yb2O3 concentration, reaching 7800 dB/m with 3 mol-% of Yb2O3. An ytterbium-doped bismuth-oxide-based fiber has also been fabricated with a fiber loss of 0.24 dB/m. A fiber laser is also demonstrated, and it shows a slope efficiency of 36%.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
    [CrossRef]
  2. M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
    [CrossRef]
  3. A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
    [CrossRef]
  4. S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
    [CrossRef]
  5. S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, N. Peyghambarian, “Er3+-doped phosphate glasses for fiber asmlifiers with high gain per unit lengths,” J. Non-Cryst. solids, 263&264, 364–368 (2000).
    [CrossRef]
  6. N. Sugimoto, K. Ochiai, S. Ohara, H. Hayashi, Y. Fukasawa, T. Hirose and M. Reyes, “Highly efficient and short length Lantahnum co-doped Bi2O3-based EDF for extended L-band amplification,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2002), paper PDP5.
  7. S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
    [CrossRef]
  8. S. Ohara, T. Hasegawa, and N. Sugimoto, “Boron co-doped Bi2O3-based Erbium doped fiber for Short Pulse Amplification,” in Conference on Optical Amplifiers and Their Applications, Technical Digest (Optical Society of America, 2005), paper TuD5.
  9. S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
    [CrossRef]
  10. S. Ohara and N. Sugimoto, “Bi(2)O(3)-based erbium-doped fiber laser with a tunable range over 130 nm,” Opt. Lett. 33(11), 1201–1203 (2008).
    [CrossRef] [PubMed]
  11. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
    [CrossRef] [PubMed]
  12. Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
    [CrossRef]
  13. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
    [CrossRef] [PubMed]
  14. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [CrossRef]
  15. B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
    [CrossRef]
  16. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
    [CrossRef]

2009 (3)

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[CrossRef]

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17(12), 9924–9932 (2009).
[CrossRef] [PubMed]

2008 (2)

S. Ohara and N. Sugimoto, “Bi(2)O(3)-based erbium-doped fiber laser with a tunable range over 130 nm,” Opt. Lett. 33(11), 1201–1203 (2008).
[CrossRef] [PubMed]

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

2006 (1)

2004 (1)

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

2002 (1)

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

2001 (1)

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

2000 (1)

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

1998 (2)

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Aozasa, S.

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Batalioto, F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Byer, R. L.

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[CrossRef] [PubMed]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Cha, J.

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Digonnet, M. J. F.

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[CrossRef] [PubMed]

Dong, L.

Fu, L.

Fukasawa, Y.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Hayashi, H.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Hirose, T.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Hoshino, K.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

Jiang, S.

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[CrossRef] [PubMed]

Kanamori, T.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Karthikeyan, B.

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

Kobayashi, K.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Lee, Y. W.

Lee, Y.-W.

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Masuda, H.

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

McKay, H. A.

Mohan, S.

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

Mori, A.

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Nagashima, T.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Nishida, Y.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Nunes, L. A. O.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Ochiai, K.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Ohara, S.

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[CrossRef]

S. Ohara and N. Sugimoto, “Bi(2)O(3)-based erbium-doped fiber laser with a tunable range over 130 nm,” Opt. Lett. 33(11), 1201–1203 (2008).
[CrossRef] [PubMed]

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Ohishi, Y.

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Oikawa, K.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

Oliveira, S. L.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Ono, H.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Peng, X.

Philip, R.

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

Reyes, M.

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Sakamoto, T.

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

Shikano, K.

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

Shimizu, M.

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

Sinha, S.

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, “20 W single-mode Yb3+ -doped phosphate fiber laser,” Opt. Lett. 31(22), 3255–3257 (2006).
[CrossRef] [PubMed]

Suchand Sandeep, C. S.

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

Sugimoto, N.

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[CrossRef]

S. Ohara and N. Sugimoto, “Bi(2)O(3)-based erbium-doped fiber laser with a tunable range over 130 nm,” Opt. Lett. 33(11), 1201–1203 (2008).
[CrossRef] [PubMed]

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Suzuki, S.

Takebe, H.

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Urbanek, K. E.

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

Yamada, M.

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-µm broadband amplification,” Opt. Lett. 23(4), 274–276 (1998).
[CrossRef]

Electron. Lett. (2)

A. Mori, T. Sakamoto, K. Shikano, K. Kobayashi, K. Hoshino, and M. Shimizu, “Gain flattened Er3+-doped tellurite fibre amplifier for WDM signals in the 1581-1616nm wavelength region,” Electron. Lett. 36(7), 621–622 (2000).
[CrossRef]

S. Aozasa, H. Masuda, T. Sakamoto, K. Shikano, and M. Shimizu, “Gain-shifted TDFA employing high concentration doping technique with high internal power conversion efficiency of 70%,” Electron. Lett. 38(8), 361–363 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y.-W. Lee, M. J. F. Digonnet, S. Sinha, K. E. Urbanek, R. L. Byer, and S. Jiang, “High-Power Yb3+-Doped Phosphate Fiber Amplifier,” IEEE J. Sel. Top. Quantum Electron. 15(1), 93–102 (2009).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, “Gain-Flattend Tellurite-Based EDFA with a Flat Amplification Bandwidth of 76 nm,” IEEE Photon. Technol. Lett. 10(9), 1244–1246 (1998).
[CrossRef]

J. Appl. Phys. (2)

B. Karthikeyan, C. S. Suchand Sandeep, J. Cha, H. Takebe, R. Philip, and S. Mohan, “Optical properties and ultrafast optical nonlinearity of Yb3+ doped sodium borate and bismuthate glasses,” J. Appl. Phys. 103(10), 103509 (2008).
[CrossRef]

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90(7), 3308–3313 (2001).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

S. Ohara, N. Sugimoto, K. Ochiai, H. Hayashi, Y. Fukasawa, T. Hirose, T. Nagashima, and M. Reyes, “Ultra-wideband amplifiers based on Bi2O3-EDFAs,” Opt. Fiber Technol. 10(4), 283–295 (2004).
[CrossRef]

Opt. Lett. (3)

Opt. Mater. (1)

S. Ohara and N. Sugimoto, “Bi2O3-based erbium doped fiber for short pulse amplification,” Opt. Mater. 31(9), 1280–1283 (2009).
[CrossRef]

Other (3)

S. Ohara, T. Hasegawa, and N. Sugimoto, “Boron co-doped Bi2O3-based Erbium doped fiber for Short Pulse Amplification,” in Conference on Optical Amplifiers and Their Applications, Technical Digest (Optical Society of America, 2005), paper TuD5.

S. Jiang, T. Luo, B. Hwang, F. Smekatala, K. Seneschal, J. Lucas, N. Peyghambarian, “Er3+-doped phosphate glasses for fiber asmlifiers with high gain per unit lengths,” J. Non-Cryst. solids, 263&264, 364–368 (2000).
[CrossRef]

N. Sugimoto, K. Ochiai, S. Ohara, H. Hayashi, Y. Fukasawa, T. Hirose and M. Reyes, “Highly efficient and short length Lantahnum co-doped Bi2O3-based EDF for extended L-band amplification,” in Optical Amplifiers and Their Applications, OSA Technical Digest Series (Optical Society of America, 2002), paper PDP5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Absorption spectra of Yb2O3-doped Bi2O3-based glass with different Yb2O3 concentrations. (b) Absorption as a function of Yb2O3 concentration.

Fig. 2.
Fig. 2.

Absorption spectrum of Yb3+-doped Bi2O3-based glass. Dotted lines show Lorentzian curves. Right-hand graph shows the second-order derivation of the absorption spectrum.

Fig. 3.
Fig. 3.

Emission spectrum of Yb3+-doped Bi2O3-based glass pumped by a laser diode at 975 nm. Dotted lines show Lorentzian curves.

Fig. 4.
Fig. 4.

(a) Decayed emission intensity of Yb3+-doped Bi2O3-based glass. (b) Lifetime of the 2F5/2 level of Yb3+ as a function of Yb2O3 concentration.

Fig. 5.
Fig. 5.

Experimental setup for fiber laser.

Fig. 6.
Fig. 6.

(a) Emission spectrum of Yb3+-doped Bi2O3-based glass. (b) Pump power dependence of the output power on FBG2 reflectance.

Metrics