Abstract

We demonstrate efficient, low power, continuous-wave four-wave mixing in the C-band, using a high index doped silica glass micro ring resonator having a Q-factor of 1.2 million. A record high conversion efficiency for this kind of device is achieved over a bandwidth of 20nm. We show theoretically that the characteristic low dispersion enables phase-matching over a tuning range > 160nm.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
    [CrossRef] [PubMed]
  2. D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
    [CrossRef]
  3. J. Ma and C. Jiang, “Design and analysis of all-optical switches based on fiber parametric devices,” Opt. Commun. 281(9), 2605–2613 (2008).
    [CrossRef]
  4. K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
    [CrossRef]
  5. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
    [CrossRef]
  7. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
    [CrossRef] [PubMed]
  8. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
    [CrossRef] [PubMed]
  9. G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
    [CrossRef]
  10. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [CrossRef] [PubMed]
  11. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P. T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29(7), 769–771 (2004).
    [CrossRef] [PubMed]
  12. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25(8), 554–556 (2000).
    [CrossRef]
  13. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
    [CrossRef]
  14. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
    [CrossRef] [PubMed]
  15. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [CrossRef]
  16. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
    [CrossRef] [PubMed]
  17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS compatible multiple wavelength source,” in Conference for Lasers and Electro-Optics, Postdeadline Paper CPDB8, (2009).
  18. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [CrossRef] [PubMed]

2009 (2)

2008 (4)

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

J. Ma and C. Jiang, “Design and analysis of all-optical switches based on fiber parametric devices,” Opt. Commun. 281(9), 2605–2613 (2008).
[CrossRef]

2007 (4)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007).
[CrossRef] [PubMed]

E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
[CrossRef]

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

2005 (1)

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2001 (1)

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[CrossRef]

2000 (1)

Absil, P. P.

Aggarwal, I. D.

Agha, I. H.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[CrossRef] [PubMed]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

Agrawal, G. P.

Baets, R.

G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
[CrossRef]

Belthangady, C.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Bienstman, P.

G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
[CrossRef]

Boyd, R. W.

Broaddus, D. H.

Cho, P. S.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Chu, S. T.

Du, S.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Duchesne, D.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Eggleton, B. J.

Ferrera, M.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Foster, M. A.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

Fu, L. B.

Gaeta, A. L.

D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Ginzton, E. L.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Grover, R.

Harris, S. E.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Heebner, J. E.

Ho, P. T.

Ho, P.-T.

Hryniewicz, J. V.

Imai, K.

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[CrossRef]

Ito, H.

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[CrossRef]

Jiang, C.

J. Ma and C. Jiang, “Design and analysis of all-optical switches based on fiber parametric devices,” Opt. Commun. 281(9), 2605–2613 (2008).
[CrossRef]

Joneckis, L. G.

Kawase, K.

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[CrossRef]

Klonidis, D.

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

Kolchin, P.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Lamont, M. R. E.

Lepeshkin, N. N.

Lipson, M.

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

Luan, F.

Ma, J.

J. Ma and C. Jiang, “Design and analysis of all-optical switches based on fiber parametric devices,” Opt. Commun. 281(9), 2605–2613 (2008).
[CrossRef]

Magi, E.

Mägi, E. C.

Morandotti, R.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Morthier, G.

G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
[CrossRef]

Moss, D. J.

Nejabati, R.

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

Nguyen, H. C.

O’Mahony, M. J.

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

Okawachi, Y.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

Pelusi, M. D.

Politi, C. T.

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

Priem, G.

G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
[CrossRef]

Razzari, L.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Robinson, J. T.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Sanghera, J. S.

Schweinsberg, A.

Sharping, J. E.

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

Shaw, L. B.

Shikata, J.

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[CrossRef]

Simeonidou, D.

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Turner, A. C.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Wicks, G. W.

Wilson, R. A.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Yeom, D. I.

Yin, G. Y.

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Yin, L.

Appl. Phys. Lett. (1)

K. Kawase, J. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[CrossRef]

J. Appl. Phys. (1)

G. Priem, P. Bienstman, G. Morthier, and R. Baets, “Impact of absorption mechanisms on Kerr-nonlinear resonator behavior,” J. Appl. Phys. 99(6), 063103 (2006).
[CrossRef]

J. Lightw. Tech. (1)

D. Klonidis, C. T. Politi, R. Nejabati, M. J. O’Mahony, and D. Simeonidou, “OPSnet: design and demonstration of an asynchronous high-speed optical packet switch,” J. Lightw. Tech. 23(10), 2914–2925 (2005).
[CrossRef]

Nat. Photonics (2)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2007).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Ma and C. Jiang, “Design and analysis of all-optical switches based on fiber parametric devices,” Opt. Commun. 281(9), 2605–2613 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. (1)

I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76(4), 043837 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

P. Kolchin, S. Du, C. Belthangady, G. Y. Yin, S. E. Harris, and E. L. Ginzton, “Generation of narrow-bandwidth paired photons: use of a single driving laser,” Phys. Rev. Lett. 97(11), 113602 (2006).
[CrossRef] [PubMed]

Other (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS compatible multiple wavelength source,” in Conference for Lasers and Electro-Optics, Postdeadline Paper CPDB8, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Linear transmission spectrum of the ring resonator recorded at the Drop port (a) and high resolution detail for a typical resonance (b) (with a lorentzian fit) showing a resonance width of 1.3pm. The variation in resonance strengths in a) are mainly a result of the 0.3pm spectral resolution.

Fig. 2.
Fig. 2.

FWM experimental setup.

Fig. 3.
Fig. 3.

Group velocity dispersion of the resonator obtained by fitting the experimentally measured resonance frequencies. The fits include up to 4th order dispersion terms.

Fig. 4.
Fig. 4.

FWM experimental results for pump and signal wavelengths tuned to adjacent resonances for the TE mode (200GHz) (a) and 6 resonances apart (~1.2THz) for the TM mode (b). The 3rd and 4th idlers (a) demonstrate the onset of cascaded FWM. Note the linewidths are broader than in Fig. 1 because of the limited OSA resolution (15pm).

Fig. 5.
Fig. 5.

Idler detuning (see Eq. (7)) for TM (a) and TE (b) polarizations. ∆ν is the difference between pump and signal frequencies (both independently tuned to resonances). Black regions represent non-phase matched conditions (where the idler is further than a FWHM from a central resonance frequency), whereas colored regions represent varying degrees of phase matching, with blue representing ideal phase matching. The black band reflects the region where experimental data was taken for the dispersion measurements.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2υp=υs+υi,
mλm=nmL=nm2πR ,
βmnmωmc=mR ,
η=PIdlerPSignal=L·γ2·(FE)8·PPump2 ,
Δυ=υiυres<ΔυFWHM2,

Metrics