Abstract

We present the results of a study of flat and uniform poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic (PV) layers that were produced by a simple pre-metered horizontal-dipping process for the fabrication of polymer solar cells (PSCs). It is shown that this process can produce high quality and thin films by utilizing the downstream meniscus of the solution, which can be controlled by adjusting experimental parameters of the gap height and the carrying speed. It is also shown that the produced PV film exhibits high power conversion efficiency of ca. 4.2% with a large active area. It was demonstrated that this pre-metered process for solution coating may be promising for achieving highly efficient, reliable, and large-area PSCs.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
    [CrossRef] [PubMed]
  2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
    [CrossRef]
  3. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
    [CrossRef]
  4. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [CrossRef]
  5. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
    [CrossRef] [PubMed]
  6. A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
    [CrossRef]
  7. S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
    [CrossRef]
  8. J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
    [CrossRef]
  9. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
    [CrossRef]
  10. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
    [CrossRef]
  11. S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
    [CrossRef]
  12. C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
    [CrossRef]
  13. T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
    [CrossRef]
  14. S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
    [CrossRef]
  15. J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
    [CrossRef]
  16. C.-C. Kuo, M. M. Payne, J. E. Anthony, and T. N. Jackson, “TES Anthradithiophene Solution-Processed OTFTs with 1 cm2/V-s Mobility,” 2004 International Electron Device Meeting Technical Digest, 373–376 (2004).
  17. S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
    [CrossRef]
  18. L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica URSS. 17, 42–54 (1942).
  19. J. W. Krozel, A. N. Palazoglu, and R. L. Powell, “Experimental observation of dip-coating phenomena and the prospect of using motion control to minimize fluid retention,” Chem. Eng. Sci. 55(18), 3639–3650 (2000).
    [CrossRef]
  20. G. A. Luurtsema, “Spin coating for rectangular substrates,” U. California, Berkeley, [Online]. Available: http://bcam.berkeley.edu/ ARCHIVE/theses/gluurtsMS.pdf . (1997)
  21. S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films,” Jpn. J. Appl. Phys. 47(2), 1238–1241 (2008).
    [CrossRef]
  22. M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
    [CrossRef]
  23. C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
    [CrossRef]

2009 (1)

J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
[CrossRef]

2008 (3)

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[CrossRef]

S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films,” Jpn. J. Appl. Phys. 47(2), 1238–1241 (2008).
[CrossRef]

2007 (4)

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
[CrossRef]

2006 (1)

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

2005 (3)

M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
[CrossRef]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
[CrossRef]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

2003 (1)

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

2002 (2)

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

2001 (2)

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[CrossRef]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[CrossRef]

2000 (1)

J. W. Krozel, A. N. Palazoglu, and R. L. Powell, “Experimental observation of dip-coating phenomena and the prospect of using motion control to minimize fluid retention,” Chem. Eng. Sci. 55(18), 3639–3650 (2000).
[CrossRef]

1995 (1)

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

1992 (1)

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[CrossRef] [PubMed]

1942 (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica URSS. 17, 42–54 (1942).

Aernouts, T.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

Aleksandrov, T.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

Al-Ibrahim, M.

M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
[CrossRef]

Ambacher, O.

M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
[CrossRef]

Arias, A. C.

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

Banach, M.

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

Bazan, G. C.

J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
[CrossRef]

Brabec, C. J.

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
[CrossRef]

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[CrossRef]

Cho, S.

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

Choulis, S. A.

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
[CrossRef]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

Cook, S.

S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films,” Jpn. J. Appl. Phys. 47(2), 1238–1241 (2008).
[CrossRef]

Corcoran, N.

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

Emery, K.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Friend, R. H.

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

Furube, A.

S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films,” Jpn. J. Appl. Phys. 47(2), 1238–1241 (2008).
[CrossRef]

Gao, J.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Genoe, J.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

Girotto, C.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

Gobsch, G.

M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
[CrossRef]

Guo, T.-F.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Hauch, J. A.

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

Heeger, A. J.

J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
[CrossRef]

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[CrossRef] [PubMed]

Higuchi, H.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Horng, S.-F.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[CrossRef]

Hoth, C. N.

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
[CrossRef]

Huang, J.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Huck, W. T. S.

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

Hummelen, J. C.

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[CrossRef]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Jabbour, G. E.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[CrossRef]

Jo, J.

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

Katoh, R.

S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films,” Jpn. J. Appl. Phys. 47(2), 1238–1241 (2008).
[CrossRef]

Kim, D.-Y.

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

Kim, S.-S.

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

Krozel, J. W.

J. W. Krozel, A. N. Palazoglu, and R. L. Powell, “Experimental observation of dip-coating phenomena and the prospect of using motion control to minimize fluid retention,” Chem. Eng. Sci. 55(18), 3639–3650 (2000).
[CrossRef]

Landau, L. D.

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica URSS. 17, 42–54 (1942).

Lee, K.

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

Lee, K.-C.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[CrossRef]

Levich, V. G.

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica URSS. 17, 42–54 (1942).

Li, G.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
[CrossRef]

MacKenzie, J. D.

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

Meng, H.-F.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[CrossRef]

Moriarty, T.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

Na, S.-I.

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

Nagatsuka, T.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Nguyen, T.-Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

Ouyang, J.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Padinger, F.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Palazoglu, A. N.

J. W. Krozel, A. N. Palazoglu, and R. L. Powell, “Experimental observation of dip-coating phenomena and the prospect of using motion control to minimize fluid retention,” Chem. Eng. Sci. 55(18), 3639–3650 (2000).
[CrossRef]

Peet, J.

J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
[CrossRef]

Peyghambarian, N.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[CrossRef]

Poortmans, J.

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

Powell, R. L.

J. W. Krozel, A. N. Palazoglu, and R. L. Powell, “Experimental observation of dip-coating phenomena and the prospect of using motion control to minimize fluid retention,” Chem. Eng. Sci. 55(18), 3639–3650 (2000).
[CrossRef]

Radspinner, R.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[CrossRef]

Rittberger, R. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

Sariciftci, N. S.

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[CrossRef]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[CrossRef] [PubMed]

Scharber, M. C.

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

Schilinsky, P.

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
[CrossRef]

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

Senatore, M. L.

J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
[CrossRef]

Sensfuss, S.

M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
[CrossRef]

Shaheen, S. E.

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[CrossRef]

Shrotriya, V.

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
[CrossRef]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Smilowitz, L.

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[CrossRef] [PubMed]

Tae, G.

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

Tseng, S.-R.

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[CrossRef]

Waldauf, C.

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

Wudl, F.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[CrossRef] [PubMed]

Yang, Y.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
[CrossRef]

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Yao, Y.

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
[CrossRef]

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Yoshioka, M.

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Yu, G.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Yuen, J.

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

Acta Physicochimica URSS. (1)

L. D. Landau and V. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochimica URSS. 17, 42–54 (1942).

Adv. Funct. Mater. (2)

F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells,” Adv. Funct. Mater. 13(1), 85–88 (2003).
[CrossRef]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11(1), 15–26 (2001).
[CrossRef]

Adv. Mater. (4)

J. Peet, M. L. Senatore, A. J. Heeger, and G. C. Bazan, “The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells,” Adv. Mater. 21(14-15), 1521–1527 (2009).
[CrossRef]

C. N. Hoth, S. A. Choulis, P. Schilinsky, and C. J. Brabec, “High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends,” Adv. Mater. 19(22), 3973–3978 (2007).
[CrossRef]

S.-S. Kim, S.-I. Na, J. Jo, G. Tae, and D.-Y. Kim, “Efficient Polymer Solar Cells Fabricated by Simple Brush Painting,” Adv. Mater. 19(24), 4410–4415 (2007).
[CrossRef]

J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, “High-Performance, Flexible Polymer Light-Emitting Diodes Fabricated by a Continuous Polymer Coating Process,” Adv. Mater. 14(12), 915–918 (2002).
[CrossRef]

Appl. Phys. Lett. (6)

T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, “Polymer based organic solar cells using ink-jet printed active layers,” Appl. Phys. Lett. 92(3), 033306 (2008).
[CrossRef]

S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, “Fabrication of bulk heterojunction plastic solar cells by screen printing,” Appl. Phys. Lett. 79(18), 2996–2998 (2001).
[CrossRef]

A. C. Arias, N. Corcoran, M. Banach, R. H. Friend, J. D. MacKenzie, and W. T. S. Huck, “Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing,” Appl. Phys. Lett. 10(10), 1695–1697 (2002).
[CrossRef]

S. Cho, J. Yuen, J. Y. Kim, K. Lee, and A. J. Heeger, “Photovoltaic effects on the organic ambipolar field-effect transistors,” Appl. Phys. Lett. 90(6), 063511 (2007).
[CrossRef]

S.-R. Tseng, H.-F. Meng, K.-C. Lee, and S.-F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett. 93(15), 153308 (2008).
[CrossRef]

M. Al-Ibrahim, O. Ambacher, S. Sensfuss, and G. Gobsch, “Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene,” Appl. Phys. Lett. 86(20), 201120 (2005).
[CrossRef]

Chem. Eng. Sci. (1)

J. W. Krozel, A. N. Palazoglu, and R. L. Powell, “Experimental observation of dip-coating phenomena and the prospect of using motion control to minimize fluid retention,” Chem. Eng. Sci. 55(18), 3639–3650 (2000).
[CrossRef]

J. Appl. Phys. (2)

G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98(4), 043704–043708 (2005).
[CrossRef]

C. Waldauf, M. C. Scharber, P. Schilinsky, J. A. Hauch, and C. J. Brabec, “Physics of organic bulk heterojunction devices for photovoltaic applications,” J. Appl. Phys. 99(10), 104503 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Cook, A. Furube, and R. Katoh, “Mixed Solvents for Morphology Control of Organic Solar Cell Blend Films,” Jpn. J. Appl. Phys. 47(2), 1238–1241 (2008).
[CrossRef]

Nat. Mater. (1)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[CrossRef]

Science (3)

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing,” Science 13(5835), 222–225 (2007).
[CrossRef] [PubMed]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[CrossRef] [PubMed]

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions,” Science 270(5243), 1789–1791 (1995).
[CrossRef]

Other (2)

G. A. Luurtsema, “Spin coating for rectangular substrates,” U. California, Berkeley, [Online]. Available: http://bcam.berkeley.edu/ ARCHIVE/theses/gluurtsMS.pdf . (1997)

C.-C. Kuo, M. M. Payne, J. E. Anthony, and T. N. Jackson, “TES Anthradithiophene Solution-Processed OTFTs with 1 cm2/V-s Mobility,” 2004 International Electron Device Meeting Technical Digest, 373–376 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Photograph (upper) with its schematic illustration (lower) of the studied pre-metered horizontal-dip (H-dip) coating process: a cylindrical coating barrier (SUS steel) with a diameter R, a gap height h0 , and a carrying speed U.

Fig. 2.
Fig. 2.

(a) Photograph of the H-dip-coated film (left) and the spin-coated film (right, at 2000 rpm) on 2” substrates. (b) Coated film thickness data of PEDOT:PSS as functions of carrying speed for two gap heights: 0.9 and 0.8 mm. (c) Coated PV film thickness data of P3HT:PCBM as functions of carrying speed for two gap heights: 0.9 and 0.8 mm. The thickness was measured at the edges and center positions of the same film. Solid curves show theoretical predictions of Landau & Levich equation.

Fig. 3.
Fig. 3.

Normalized UV-vis absorption spectra of PV layers (a) prepared by H-dipping and spin-coating P3HT:PCBM blended solutions with chloroform solvent without any thermal treatment, (b) prepared by H-dipping in blended solutions for three concentrations of added ethanol to chloroform solvent without any thermal treatment, and (c) prepared by H-dipping for three concentrations of added ethanol after heating treatment at 90°C.

Fig. 4.
Fig. 4.

The J-V characteristic curves of polymer solar cells fabricated by the H-dipping process for various concentrations of ethanol in mixed PV solutions: (a) in the dark, and (b) under light (air mass 1.5G with an incident light intensity of 100 mW/cm2). (c) The voltage dependence of illuminated photocurrent for extended reverse bias. The solid lines represent linear fits of the J-V curves.

Fig. 5.
Fig. 5.

SEM images of the PV layers produced by H-dipping process for mixed solutions with ethanol concentrations of 0, 1.0, 3.0, and 5.0%.

Fig. 6.
Fig. 6.

Photograph of a flexible polymer solar cell made by the H-dipping process on a flexible substrate (2.5”×3.5”).

Tables (1)

Tables Icon

Table 1. Device performance of polymer solar cells made by H-dipping process for various concentrations of added ethanol to chloroform solvent used in this work.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h=1.34(μUσ)23·Rd,
n·Rd=(xd22R+2h0)h.

Metrics