Abstract

We observe the dynamics of pulse trapping in a microstructured fiber. Few-cycle pulses create a system of two pulses: a Raman shifting soliton traps a pulse in the normal dispersion regime. When the soliton approaches a wavelength of zero group velocity dispersion the Raman shifting abruptly terminates and the trapped pulse is released. In particular, the trap is less than 4 ps long and contains a 1 ps pulse. After being released, this pulse asymmetrically expands to more than 10 ps. Additionally, there is no disturbance of the trapping dynamics at high input pulse energies as the supercontinuum develops further.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum Generation in Photonic Crystal Fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  2. N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
    [CrossRef]
  3. E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
    [CrossRef]
  4. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, "Broadband light generation at _ 1300nm through spectrally recoiled solitons and dispersive wave," Opt. Lett. 33, 621-623 (2008).
    [CrossRef] [PubMed]
  5. N. Nishizawa and T. Goto, "Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength, " Opt. Express 10, 1151-1159 (2002).
    [PubMed]
  6. N. Nishizawa and T. Goto "Pulse Trapping by Ultrashort Soliton Pulses in Optical Fibers Across Zero-Dispersion Wavelength," Opt. Lett. 27, 152-154 (2002).
    [CrossRef]
  7. N. Nishizawa and T. Goto "Ultrafast All Optical Switching by Use of Pulse Trapping Across Zero-Dispersion Wavelength," Opt. Express 11, 359-365 (2003).
    [CrossRef] [PubMed]
  8. A. V. Gorbach and D. V. Skryabin "Light Trapping in Gravity-Like Potentials and Expansion of Supercontinuum Spectra in Photonic-Crystal Fibres," Nat. Photonics 1, 653-656 (2007).
    [CrossRef]
  9. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor "Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008).
    [CrossRef] [PubMed]
  10. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor "Toward visible cw-pumped supercontinua," Opt. Lett. 33, 2122-2124 (2008).
    [CrossRef] [PubMed]
  11. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).
  13. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
    [CrossRef] [PubMed]
  14. L. Gagnon, and P. A. Belanger, "Soliton Self-Frequency Shift versus Galilean-Like Symmetry," Opt. Lett. 15, 466-468 (1990).
    [CrossRef] [PubMed]
  15. Measured data provided by Crystal Fibre A/S, Denmark.
  16. F. X. Kartner, Few-Cycle Laser Pulse Generation and Its Applications: Vol 95 (Springer, 2004).
  17. J. M. Dudley, L. Provino, N. Grossard, H. Mailotte, R. S. Windeler, B. J. Eggleton, and S. Coen "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  18. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  19. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larson, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths, " Opt. Express 12, 1045-1054 (2004).
    [CrossRef] [PubMed]
  20. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
    [CrossRef] [PubMed]
  21. M. H. Frosz, P. Falk, and O. Bang "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength, " Opt. Express 13, 6181-6192 (2005).
    [CrossRef] [PubMed]
  22. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  23. C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
    [CrossRef]
  24. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  25. The applied scaling factor was as follows: Fig. 7 left:3, right:2; Fig. 9 left:3, right:2.
  26. A. V. Yulin, D. V. Skryabin, and P. St. Russell "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
    [CrossRef] [PubMed]
  27. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson "Supercontinuum generation at 1.06μ m in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).

2008 (4)

2007 (1)

A. V. Gorbach and D. V. Skryabin "Light Trapping in Gravity-Like Potentials and Expansion of Supercontinuum Spectra in Photonic-Crystal Fibres," Nat. Photonics 1, 653-656 (2007).
[CrossRef]

2006 (3)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum Generation in Photonic Crystal Fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson "Supercontinuum generation at 1.06μ m in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).

2005 (3)

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

M. H. Frosz, P. Falk, and O. Bang "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength, " Opt. Express 13, 6181-6192 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto "Ultrafast All Optical Switching by Use of Pulse Trapping Across Zero-Dispersion Wavelength," Opt. Express 11, 359-365 (2003).
[CrossRef] [PubMed]

2002 (4)

2001 (1)

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[PubMed]

1995 (1)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

1990 (1)

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Andersen, P. E.

Andersen, T. V.

Baltuska, A.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Bang, O.

Belanger, P. A.

Bjarklev, A. O.

Broderick, N. G. R.

Broeng, J.

Cheng, C.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
[CrossRef]

Coen, S.

Cumberland, B. A.

Dudley, J. M.

Eggleton, B. J.

Falk, P.

Fang, Z.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
[CrossRef]

Frosz, M. H.

Fuji, T.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Gagnon, L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum Generation in Photonic Crystal Fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
[CrossRef] [PubMed]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin "Light Trapping in Gravity-Like Potentials and Expansion of Supercontinuum Spectra in Photonic-Crystal Fibres," Nat. Photonics 1, 653-656 (2007).
[CrossRef]

Goto, T.

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Grossard, N.

Hansen, K. P.

Hayes, J. R.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[PubMed]

Hill, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

Hilligsøe, K. M.

Horak, P.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[PubMed]

Ishii, N.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

K¨onig, F.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

Kaivola, M.

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Keiding, S.

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Kohler, S.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Krausz, F.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Kristiansen, R.

Kuklewicz, C.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

Larson, J. J.

Lehtonen, M.

Leonhardt, U.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Mailotte, H.

Metzger, T.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Mølmer, K.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Nielsen, C. K.

Nishizawa, N.

Paulsen, H. N.

Philbin, T. G.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

Poletti, F.

Popov, S. V.

Price, J. H. V.

Provino, L.

Richardson, D. J.

Robertson, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

Rulkov, A. B.

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Serebryannikov, E. E.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Shen, B.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
[CrossRef]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin "Light Trapping in Gravity-Like Potentials and Expansion of Supercontinuum Spectra in Photonic-Crystal Fibres," Nat. Photonics 1, 653-656 (2007).
[CrossRef]

A. V. Yulin, D. V. Skryabin, and P. St. Russell "Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion," Opt. Lett. 29, 2411-2413 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

St. Russell, P.

Taylor, J. R.

Teisset, C. Y.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Thrane, L.

Travers, J. C.

Tse, M. L. V.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Wang, X.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
[CrossRef]

Windeler, R. S.

Yulin, A. V.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Zheltikov, A. M.

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

Appl. Phys. B (2)

E. E. Serebryannikov, A. M. Zheltikov, N. Ishii, C. Y. Teisset, S. Kohler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuska, "Soliton Self-Frequency Shift of 6-fs Pulses in Photonic-Crystal Fibers," Appl. Phys. B 81, 585-588 (2005).
[CrossRef]

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fiber," Appl. Phys. B 80, 291-294 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin "Light Trapping in Gravity-Like Potentials and Expansion of Supercontinuum Spectra in Photonic-Crystal Fibres," Nat. Photonics 1, 653-656 (2007).
[CrossRef]

Opt. Express (7)

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor "Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, "Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength, " Opt. Express 10, 1151-1159 (2002).
[PubMed]

N. Nishizawa and T. Goto "Ultrafast All Optical Switching by Use of Pulse Trapping Across Zero-Dispersion Wavelength," Opt. Express 11, 359-365 (2003).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson "Supercontinuum generation at 1.06μ m in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larson, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths, " Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength, " Opt. Express 13, 6181-6192 (2005).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. E (1)

N. Ishii, C. Y. Teisset, S. Kohler, E. E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuska, and A. M. Zheltikov, "Widely Tunable Soliton Frequency Shifting of Few-Cycle Laser Pulses," Phys. Rev. E 74, 036617 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001).
[PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers," Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum Generation in Photonic Crystal Fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (2)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. K¨onig, and U. Leonhardt, "Fiber-Optical Analog of the Event Horizon," Science 319, 1367-1370 (2008).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other (4)

The applied scaling factor was as follows: Fig. 7 left:3, right:2; Fig. 9 left:3, right:2.

Measured data provided by Crystal Fibre A/S, Denmark.

F. X. Kartner, Few-Cycle Laser Pulse Generation and Its Applications: Vol 95 (Springer, 2004).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

The potential created by the accelerating soliton. The induced nonlinear index change forms a barrier at τ=0. The soliton acceleration causes the slope in the potential.

Fig. 2.
Fig. 2.

The group velocity dispersion, β 2, of the fiber NL-PM-760 [15] and the initial spectrum of the few-cycle pump pulses (inset). The dispersion zeroes at 760 nm and 1160 nm.

Fig. 3.
Fig. 3.

Relative group delay, β 1=ng/c, of the fiber NL-PM-760 [15].

Fig. 4.
Fig. 4.

Output spectra for varying amounts of chirp on the input pulse. The Group-Delay-Dispersion (GDD) before the fiber is varied over 30 fs2. The pulse energy is 39 pJ. A GDD of 7.5 fs2 broadens an unchirped 7-fs pulse by 10% in time.

Fig. 5.
Fig. 5.

Three spectra of the soliton (top) and the trapped light (bottom) as the launched pulse energy is increased (left: 21 pJ, center: 31 pJ, right: 40 pJ). Red lines mark the center wavelength of the soliton and a group velocity matched wavelength obtained from Fig. 3 [15].

Fig. 6.
Fig. 6.

Three spectra of the soliton (top) and the trapped light (bottom) for pulse energies exceeding those of Fig. 5 (left: 56 pJ, center: 88 pJ, right: 121 pJ). The Raman shift of the soliton is cancelled by Cherenkov radiation. The trapped light shifts almost completely beyond the wavelength that is group velocity matched to the soliton to shorter wavelengths and trails the soliton. Red line marks as in Fig. 5.

Fig. 7.
Fig. 7.

Measured SHG-FROG traces (top row), retrieved traces (second row), and retrieved intensity and phase (third row) for the trapped light when the soliton is accelerating. Fourth and fifth row show the independently measured trapped pulse and soliton spectra, respectively. Pulse energies are: left: 26 pJ, right: 32 pJ. Explanation of FROG axes see text.

Fig. 8.
Fig. 8.

X-FROG measurements of the soliton (top) and the corresponding trapped pulse (bottom) for low input pulse energies. The direction of propagation is to the left (pulse energies: left: 28 pJ, center: 34 pJ, right: 38 pJ). Increasing the energy redshifts (and therefore delays) the soliton. The trapped light is confined behind the soliton.

Fig. 9.
Fig. 9.

Measured SHG-FROG traces (top row), retrieved traces (second row), and retrieved intensity and phase (third row) for the trapped light when the soliton has reached the second ZDW and acceleration is terminated (estimated energies: left: 125 pJ, right: 135 pJ). Rows four and five show the trapped pulse and soliton spectra, respectively. The trapped pulse has developed a long tail, which increases beyond the trap length as the trap is terminated earlier on in the fiber. Explanation of FROG axes see text.

Fig. 10.
Fig. 10.

X-FROG measurements of the soliton and the trapped pulse for higher input energies (est. energies: left: 39 pJ, center: 100 pJ, right: 120 pJ). The soliton shift is terminated by the Cherenkov effect. The trapped light escapes the trap behind the soliton. The barrier part of the potential is still present.

Fig. 11.
Fig. 11.

The spectrum of the soliton (top) and the short-wavelength end of the supercontinuum (bottom) for pulse energies exceeding those of Fig. 6 (left: 170 pJ, center: 210 pJ, right: 280 pJ). The soliton reaches the longer ZDW even earlier in the fiber and multiple solitons undergo SSFS (top). The trapped light is released, but the spectrum extends further to the blue with a distinctive gap at 550 nm (bottom).

Fig. 12.
Fig. 12.

SHG-FROG measurement of the trapped pulse for a pulse energy of 295 pJ corresponding to Fig. 11. The trace is similar to previous FROG measurements of the trapped light after the trapping has ended (see Fig. 9).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n(I,ω)=n0(ω)+n2I,
Az+β1At+iβ222At2=iVA.
AZ+iβ222AT2=iVA.
τ=T+αZ22ζ=Z.
ψ=Aeiϕ ϕ=αζτβ2+α2ζ36β2.
ψζ+iβ222ψτ2=iUeff(τ)ψ,
Ueff(τ)=(V(τ)ατβ2).
τ=15T024TR β2β2,s .

Metrics