Abstract

A metallic slot waveguide, with a dielectric strip embedded within, is investigated for the purpose of enhancing the optics-to-THz conversion efficiency using the difference-frequency generation (DFG) process. To describe the frequency conversion process in such lossy waveguides, a fully-vectorial coupled-mode theory is developed. Using the coupled-mode theory, we outline the basic theoretical requirements for efficient frequency conversion, which include the needs to achieve large coupling coefficients, phase matching, and low propagation loss for both the optical and THz waves. Following these requirements, a metallic waveguide is designed by considering the trade-off between modal confinement and propagation loss. Our numerical calculation shows that the conversion efficiency in these waveguide structures can be more than one order of magnitude larger than what has been achieved using dielectric waveguides. Based on the distinct impact of the slot width on the optical and THz modal dispersion, we propose a two-step method to realize the phase matching for general pump wavelengths.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97 (2007).
    [CrossRef]
  2. Y. R. Shen, The Principles of Nonlinear Optics (New York, Wiley-Interscience, 1984).
  3. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  4. Y. Jiang and Y. J. Ding, "Efficient terahertz generation from two collinearly propagating CO2 laser pulses," Appl. Phys. Lett. 91, 091108 (2007).
    [CrossRef]
  5. D. E. Thompson and P. D. Coleman, "Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. 22, 995-1000 (1974).
    [CrossRef]
  6. W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435 (2003).
    [CrossRef]
  7. H. Cao, R. A. Linke, and A. Nahata, "Broadband generation of terahertz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
    [CrossRef] [PubMed]
  8. V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
    [CrossRef]
  9. A. C. Chiang, T. D. Wang, Y. Y. Lin, S. T. Lin, H. H. Lee, Y. C. Huang, and Y. H. Chen, "Enhanced terahertzwave parametric generation and oscillation in lithium niobate waveguides at terahertz frequencies," Opt. Lett. 30, 3392-3394 (2005).
    [CrossRef]
  10. Y. Takushima, S. Y. Shin, and Y. C. Chung, "Design of a LiNbO3 ribbon waveguide for efficient differencefrequency generation of terahertz wave in the collinear configuration," Opt. Express 15, 14783-14792 (2007).
    [CrossRef] [PubMed]
  11. C. Staus, T. Kuech, and L. McCaughan, "Continuously phase-matched terahertz difference frequency generation in an embedded-waveguide structure supporting only fundamental modes," Opt. Express 16, 13296-13303 (2008).
    [CrossRef] [PubMed]
  12. K. L. Vodopyanov and Y. H. Avetisyan, "Optical terahertz wave generation in a planar GaAs waveguide," Opt. Lett. 33, 2314-2316 (2008).
    [CrossRef] [PubMed]
  13. A. Marandi, T. E. Darcie, and P. P. M. So, "Design of a continuous-wave tunable terahertz source using waveguide-phase-matched GaAs," Opt. Express 16, 10427-10433 (2008).
    [CrossRef] [PubMed]
  14. S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
    [CrossRef]
  15. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
    [CrossRef]
  16. A. Snyder and J. Love, Optical Waveguide Theory (Kluwer Academic Pub, 1983).
  17. P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
    [CrossRef]
  18. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
    [CrossRef]
  19. I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
    [CrossRef]
  20. S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
    [CrossRef]
  21. P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
    [CrossRef]
  22. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
    [CrossRef] [PubMed]
  23. E. E. Russell and E. Bell, "Measurement of the Optical Constants of Crystal Quartz in the Far Infrared with the Asymmetric Fourier-Transform Method," J. Opt. Soc. Am. 57, 341-348 (1967).
    [CrossRef]
  24. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  25. M. Ordal, L. Long, R. Bell, S. Bell, R. Bell, and R. Alexander, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  26. E. D. Palik, Handbook of Optical Constants in Solids (Academic Press, Boston, 1991) Vol. 1.
  27. K. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11 (2008).
    [CrossRef]
  28. W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
    [CrossRef] [PubMed]
  29. P. Bienstman, "Rigorous and efficient modelling of wavelength scale photonic components," Universiteit Gent Thesis (2001).

2008 (4)

2007 (5)

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

Y. Takushima, S. Y. Shin, and Y. C. Chung, "Design of a LiNbO3 ribbon waveguide for efficient differencefrequency generation of terahertz wave in the collinear configuration," Opt. Express 15, 14783-14792 (2007).
[CrossRef] [PubMed]

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97 (2007).
[CrossRef]

Y. Jiang and Y. J. Ding, "Efficient terahertz generation from two collinearly propagating CO2 laser pulses," Appl. Phys. Lett. 91, 091108 (2007).
[CrossRef]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

2006 (1)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

2005 (1)

2004 (2)

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

H. Cao, R. A. Linke, and A. Nahata, "Broadband generation of terahertz radiation in a waveguide," Opt. Lett. 29, 1751-1753 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435 (2003).
[CrossRef]

2000 (1)

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

1999 (1)

P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
[CrossRef]

1996 (1)

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

1995 (2)

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
[CrossRef]

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

1990 (1)

1983 (1)

1974 (1)

D. E. Thompson and P. D. Coleman, "Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. 22, 995-1000 (1974).
[CrossRef]

1967 (1)

Alexander, R.

Alton, J.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Aoki, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Avetisyan, Y. H.

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Barbieri, S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Beere, H. E.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Bell, E.

Bell, R.

Bell, S.

Berger, V.

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

Bishop, W. L.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Bowen, W. E.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
[CrossRef]

Cao, H.

Charlottesville, V. A.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Chen, Y. H.

Chiang, A. C.

Chung, Y. C.

Coleman, P. D.

D. E. Thompson and P. D. Coleman, "Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. 22, 995-1000 (1974).
[CrossRef]

Crowe, T. W.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Darcie, T. E.

de Rossi, A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Dengler, R. J.

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
[CrossRef]

Dhillon, S. S.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Ding, Y. J.

Y. Jiang and Y. J. Ding, "Efficient terahertz generation from two collinearly propagating CO2 laser pulses," Appl. Phys. Lett. 91, 091108 (2007).
[CrossRef]

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435 (2003).
[CrossRef]

Fan, S.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Fattinger, C.

Fejer, M. M.

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Graidis, M. C.

P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
[CrossRef]

Grischkowsky, D.

Harris, J. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Hesler, J. L.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Huang, Y. C.

Hui, K.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Hurlbut, W. C.

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Inc, V. M. W.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Jiang, Y.

Y. Jiang and Y. J. Ding, "Efficient terahertz generation from two collinearly propagating CO2 laser pulses," Appl. Phys. Lett. 91, 091108 (2007).
[CrossRef]

Joannopoulos, J. D.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Keiding, S.

Kolodziejski, L. A.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Kuech, T.

Kuo, P. S.

Lee, H. H.

Lee, Y. S.

W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, "Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared," Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Lim, K. Y.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Lin, S. T.

Lin, Y. Y.

Linke, R. A.

Long, L.

Lynch, C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Marandi, A.

Marazita, S. M.

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

Martin, S. C.

P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
[CrossRef]

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

McCaughan, L.

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
[CrossRef]

Mehdi, I.

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

Miyazaki, H. T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Nahata, A.

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
[CrossRef]

Ordal, M.

Petrich, G. S.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Reif, R.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Ritchie, D. A.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Russell, E. E.

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Shi, W.

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435 (2003).
[CrossRef]

Shin, S. Y.

Shinya, N.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Siegel, P. H.

P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
[CrossRef]

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

Sirtori, C.

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

Smith, R. P.

P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
[CrossRef]

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

So, P. P. M.

Staus, C.

Takushima, Y.

Thompson, D. E.

D. E. Thompson and P. D. Coleman, "Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. 22, 995-1000 (1974).
[CrossRef]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97 (2007).
[CrossRef]

van Exter, M.

Villeneuve, P. R.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

Vodopyanov, K.

K. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11 (2008).
[CrossRef]

Vodopyanov, K. L.

Wang, T. D.

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, and R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167 (1995).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141,119 (2006).
[CrossRef]

Y. Jiang and Y. J. Ding, "Efficient terahertz generation from two collinearly propagating CO2 laser pulses," Appl. Phys. Lett. 91, 091108 (2007).
[CrossRef]

W. Shi and Y. J. Ding, "Designs of terahertz waveguides for efficient parametric terahertz generation," Appl. Phys. Lett. 82, 4435 (2003).
[CrossRef]

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8 THz in low-temperaturegrown GaAs," Appl. Phys. Lett. 66, 285, (1995).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

I. Mehdi, S. C. Martin, R. J. Dengler, R. P. Smith, and P. H. Siegel, "Fabrication and performance of planar Schottky diodes withT-gate-like anodes in 200-GHz subharmonically pumped waveguide mixers," IEEE Microwave Guided Wave Lett. 6, 49-51 (1996)
[CrossRef]

IEEE Trans. Electron Devices (1)

S. M. Marazita, W. L. Bishop, J. L. Hesler, K. Hui, W. E. Bowen, T. W. Crowe, V. M. W. Inc, and V. A. Charlottesville, "Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding," IEEE Trans. Electron Devices 47, 1152-1157 (2000)
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, R. P. Smith, M. C. Graidis, and S. C. Martin, "2.5-THz GaAs monolithic membrane-diode mixer," IEEE Trans. Microwave Theory Tech. 47, 596-604 (1999)
[CrossRef]

D. E. Thompson and P. D. Coleman, "Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides," IEEE Trans. Microwave Theory Tech. 22, 995-1000 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

K. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11 (2008).
[CrossRef]

Nat. Materials (1)

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Materials 2, 117-121 (2003).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97 (2007).
[CrossRef]

S. S. Dhillon, C. Sirtori, J. Alton, S. Barbieri, A. de Rossi, H. E. Beere, and D. A. Ritchie, "Terahertz transfer onto a telecom optical carrier," Nat. Photonics 1, 411-415 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Semicond. Sci. Technol. (1)

V. Berger and C. Sirtori, "Nonlinear phase matching in THz semiconductor waveguides," Semicond. Sci. Technol. 19, 964-970 (2004).
[CrossRef]

Other (5)

A. Snyder and J. Love, Optical Waveguide Theory (Kluwer Academic Pub, 1983).

Y. R. Shen, The Principles of Nonlinear Optics (New York, Wiley-Interscience, 1984).

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

E. D. Palik, Handbook of Optical Constants in Solids (Academic Press, Boston, 1991) Vol. 1.

P. Bienstman, "Rigorous and efficient modelling of wavelength scale photonic components," Universiteit Gent Thesis (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the metal slot waveguide integrated with an embedded GaAs strip: The background is quartz, the silver film and the GaAs strip have the same thickness h, and the width of the slot and the GaAs strip are w 1 and w 2, respectively. (b) Orientation of the embedded GaAs.

Fig. 2.
Fig. 2.

(a) THz output power as a function of the waveguide length. Here we assume that the two optical pumps have equal power. (b) THz output power for the 10 mm long waveguide as a function of the pump power.

Fig. 3.
Fig. 3.

Dispersion relation of the slot waveguide shown in Fig. 1. All frequencies are normalized with respect to a length scale of a=1µm. (a) In the optical frequency range 0.3~0.55 (c/a) (i.e. 90~165 THz), the waveguide supports two modes: The electric fields of these two modes are polarized predominantly along the y or x-axis. The dispersion relations of these two modes correspond to the solid and dashed line, respectively. The dotted line is the light line of quartz. (b) Dispersion relation of the slot waveguide in the THz range.

Fig. 4.
Fig. 4.

(a) Power density profile and (b) the real part of Ex of the guided mode at the frequency f=0.01(c/a)=3 THz in Fig. 3(b). (c) Power density profile and (d) the real part of Ey of the second waveguide mode [solid line in Fig. 3(a)] at f=0.495(c/a)=148.5 THz. The white lines give the outline of the waveguide structure.

Fig. 5.
Fig. 5.

Optical propagation loss at ω 2 as a function of slot width. Here the dimensions of the GaAs strip and the thickness of the metal film are fixed at w 2=0.24 µm and h=0.3 µm.

Fig. 6.
Fig. 6.

(a) Coupling coefficient as a function of slot width. (b) Maximum conversion efficiency as a function of slot width. The other geometry parameters are fixed at w 2=0.24 µm and h=0.3 µm, and the pump power is 0.5W. The solid (dashed) line denotes the case without (with) considering the phase mismatching induced by the slot width variation.

Fig. 7.
Fig. 7.

Dispersion relations for two waveguides: (i) a waveguide as in Fig. 1 with slot width w 1=3 µm (solid line); (ii) a GaAs strip waveguide without metal slot structure (circles). In both cases, the dimensions of the GaAs strip are w 2=0.24µm and h=0.3 µm.

Fig. 8.
Fig. 8.

(a) Effective index and (b) propagation loss for 3 THz guided modes as a function of w 1, where the other geometry parameters are fixed at w 2=0.4 µm and h=0.3 µm.

Tables (1)

Tables Icon

Table 1. Refractive index (n) of materials in the waveguide[23, 24, 25, 26]

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

Ej=Aj(z)(ej,t+ej,z) exp (iβjz)
Hj=Aj(z)(hj,t+hj,z)exp(iβjz).
dσ·12(ej,t×hj,t)=1,
cj=dσ·12Re{ej,t×hj,t*}.
A1z=α12 A1+iω14κ1A2*A3exp(iΔβz)
A2z=α22A2+iω24κ2A1*A3exp(iΔβz)
A3z=α32A3+iω34κ3A1A2exp(iΔβz),
κ1=dσχ=:e2*e3·(e1te1z)
κ2=dσχ=:e1*e3·(e2te2z)
κ3=dσχ=:e1e2·(e3te3z).
η=c1c2c3 ω12κ1216 exp(α1α2α32L+iΔβL)1α1α2α32+iΔβ2 exp (α1L)
Lmax=2α1α2α3 ln (α1α2+α3)
×E1=iωμH1
× H1=i ω ε E1+J1
×E2=iωμH2
×H2=iωεE2+J2,
sdσ·z(E1×H2E2×H1)=sdσ(J1·E2J2·E1)
E1=(e1t+e1z)exp (iq1z)
H1=(h1t+h1z)exp(iq1z)
E2=(e2t+e2z)exp(iq2z)
H2=(h2t+h2z)exp(iq2z)
sdσ·(e1t×h2t)=0.
E1=ΣlA˜l(z) (el,t+el,z) exp (iqlz)
H1=ΣlA˜l(z)(hl,t+hl,z)exp(iqlz),
E2=(eL,teL,z)exp(iqLz)
H2=(hL,t+hL,z)exp(iqLz)
A˜L(z)z=iω2sdσ(P1(NL)·(eL,teL,z))sdσ·eL,t×hL,texp(iqLz)
Ej=A˜j(z)(ej,t+ej,z)exp(iqjz)
Hj=A˜j(z)(hj,t+hj,z)exp(iqjz).
Aj(z)=A˜j(z)exp(αj2z).
P1NL=A˜2*A˜3exp(α3+α22z)exp(i(β3β2)z)χ=:e2*e3
A˜1z=iω14κ1A˜2*A˜3exp(α3+α22z+α12z)exp(iΔβz).
κ1=Sdσχ=:e2*e3·(e1te1z).
A1z=α12 A1 +iω14κ1A2*A3exp(iΔβz)

Metrics