Abstract

We demonstrate the transmission of 108-Gb/s polarization-division-multiplexed (PDM) 16-ary amplitude- and differential phase-shift-keying (16ADPSK) signal by using a non-coherent receiver. We generate the 16ADPSK signal by using a differential 8-ary phase-shift-keying (D8PSK) modulator and a phase-distortion-free amplitude-shift-keying (ASK) modulator. On the other hand, the receiver is implemented by using a delay interferometer based on a 3×3 fiber coupler and the data-aided phase-noise estimation (DAPNE) algorithm. By using these transmitter and receiver, we achieve a nearly quantum-limited receiver sensitivity in the back-to-back condition. In addition, we examine the possibility of transmitting 108-Gb/s signals on a 25-GHz grid without using the coherent detection technology. The results show that we can secure a sufficient optical-signal-to-noise (OSNR) margin after the transmission of 80-km long dispersion managed link. The achieved spectral efficiency is 4.0 bit/s/Hz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. van den Borne, S. L. Jansen, E. Gottwald, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “1.6-b/s/Hz spectrally efficient transmission over 1700 km of SSMF using 40 x 85.6-Gb/s POLMUX-RZ-DQPSK,” J. Lightwave Technol. 25(1), 222–232 (2007).
    [CrossRef]
  2. H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, “20.4-Tb/s (204x111 Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2007) (Optical Society of America, Washington, DC, 2007), paper PDP20.
    [PubMed]
  3. A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2007) (Optical Society of America, Washington, DC, 2007), paper PDP19.
    [PubMed]
  4. T. Ito, S. Fujita, E. L. T. de Gabory, S. Shioiri, K. Fukuchi, Y. Aono, Y. Yano, and M. Nishino, “Precise analysis of transmission impairments of Pol-Mux 110Gb/s RZ-DQPSK with automatic Pol-Dmux using straight 2,000-km SMF line,” in Proceedings of European Conference of Optical Communication (ECOC 2008), paper We.1.E.6.
  5. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
    [CrossRef]
  6. M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
    [CrossRef]
  7. K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
    [CrossRef]
  8. M. Serbay, T. Tokle, P. Jeppesen, and W. Rosenkranz, “42.8 Gbit/s, 4 bits per symbol 16-ary inverse-RZ-QASK-DQPSK transmission experiment without Polmux,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2006) (Optical Society of America, Washington, DC, 2006), paper OThL2.
  9. N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, “Incoherent 32-level optical multilevel signaling technologies,” J. Lightwave Technol. 26(1), 150–157 (2008).
    [CrossRef]
  10. T. Tokle, M. Serbay, J. B. Jensen, W. Rosenkranz, and P. Jeppesen, “Advanced modulation formats for transmission systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2008) (Optical Society of America, Washington, DC, 2008), paper OMI1.
    [CrossRef] [PubMed]
  11. N. Kikuchi, and S. Sasaki, “Sensitivity improvement of incoherent multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) signaling with non-Euclidean metric and MSPE (multi symbol phase estimation),” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2009) (Optical Society of America, Washington, DC, 2009), paper OWG1.
    [PubMed]
  12. J. G. Proakis, Digital Communications, 4th ed., (McGraw-Hill, New York, 2001).
  13. J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
    [CrossRef]
  14. Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation format for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
    [CrossRef]
  15. M. Serbay, C. Wree, and W. Rosenkranz, “Experimental investigation of RZ-8DPSK at 3x10.7Gb/s,” in IEEE LEOS annual meeting, paper WE3, pp. 483–484, Sydney, Australia (2005).
    [CrossRef]
  16. J. B. Jensen, T. Tokle, C. Peucheret, and P. Jeppesen, “Transmission of multilevel 60 Gbit/s polarization multiplexed RZ-D8PSK using only 10 Gbit/s equipment,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2007) (Optical Society of America, Washington, DC, 2007), paper OWM1.
    [CrossRef] [PubMed]
  17. Y. Han and G. Li, “Sensitivity limits and degradations in OD8PSK,” IEEE Photon. Technol. Lett. 17(3), 720–722 (2005).
    [CrossRef]
  18. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Adjustment-free DxPSK receiver based on single delay interferometer using 120-degree optical hybrid,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2009) (Optical Society of America, Washington, DC, 2009), paper OMM2.
    [PubMed]
  19. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2008) (Optical Society of America, Washington, DC, 2008), paper OThW4.
    [PubMed]
  20. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3x3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
    [CrossRef]
  21. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Enhanced sensitivity of DxPSK receiver by using data-aided phase noise estimation algorithm,” in Opto-Electronics and Communications Conference (OECC 2009), paper WV3.
  22. H. Leib, “Data-aided noncoherent demodulation of DPSK,” IEEE Trans. Commun. 43(2), 722–725 (1995).
    [CrossRef]
  23. X. Liu, “Generalized data-aided multi-symbol phase estimation for improving receiver sensitivity in direct-detection optical m-ary DPSK,” Opt. Express 15(6), 2927–2939 (2007).
    [CrossRef] [PubMed]
  24. N. Kikuchi, “Inter-Symbol Interference (ISI) Suppression Technique for Optical Binary and Multilevel Signal Generation,” J. Lightwave Technol. 25(8), 2060–2068 (2007).
    [CrossRef]
  25. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” to appear in IEEE Photon. Technol. Lett.
  26. P. J. Winzer and A. H. Gnauck, “112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid,” in Proceedings of European Conference of Optical Communication (ECOC 2008), paper Th.3.E.5.

2009

2008

2007

2006

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
[CrossRef]

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation format for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[CrossRef]

2005

Y. Han and G. Li, “Sensitivity limits and degradations in OD8PSK,” IEEE Photon. Technol. Lett. 17(3), 720–722 (2005).
[CrossRef]

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

2004

J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

1995

H. Leib, “Data-aided noncoherent demodulation of DPSK,” IEEE Trans. Commun. 43(2), 722–725 (1995).
[CrossRef]

Choi, H. Y.

Chung, Y. C.

de Waardt, H.

Gottwald, E.

Han, Y.

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation format for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[CrossRef]

Y. Han and G. Li, “Sensitivity limits and degradations in OD8PSK,” IEEE Photon. Technol. Lett. 17(3), 720–722 (2005).
[CrossRef]

Hasegawa, C.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

Hayase, S.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

Ho, K.-P.

J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Hongou, J.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
[CrossRef]

Jansen, S. L.

Kahn, J. M.

J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Kasai, K.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
[CrossRef]

Khoe, G. D.

Kikuchi, K.

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

Kikuchi, N.

Krummrich, P. M.

Leib, H.

H. Leib, “Data-aided noncoherent demodulation of DPSK,” IEEE Trans. Commun. 43(2), 722–725 (1995).
[CrossRef]

Li, G.

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation format for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[CrossRef]

Y. Han and G. Li, “Sensitivity limits and degradations in OD8PSK,” IEEE Photon. Technol. Lett. 17(3), 720–722 (2005).
[CrossRef]

Liu, X.

Mandai, K.

Nakazawa, M.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
[CrossRef]

Sasaki, S.

N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, “Incoherent 32-level optical multilevel signaling technologies,” J. Lightwave Technol. 26(1), 150–157 (2008).
[CrossRef]

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

Sekine, K.

N. Kikuchi, K. Mandai, K. Sekine, and S. Sasaki, “Incoherent 32-level optical multilevel signaling technologies,” J. Lightwave Technol. 26(1), 150–157 (2008).
[CrossRef]

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

Sugawara, T.

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

Takushima, Y.

van den Borne, D.

Yoshida, M.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
[CrossRef]

Electron. Lett.

M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou, “20 Msymbol/s, 64 and 128 QAM coherent optical transmission over 525 km using heterodyne detection with frequency-stabilized laser,” Electron. Lett. 42(12), 710–712 (2006).
[CrossRef]

K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, and T. Sugawara, “40Gbit/s, 16-ary (4bit/symbol) optical modulation/demodulation scheme,” Electron. Lett. 41(7), 430–432 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. M. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Y. Han and G. Li, “Theoretical sensitivity of direct-detection multilevel modulation format for high spectral efficiency optical communications,” IEEE J. Sel. Top. Quantum Electron. 12(4), 571–580 (2006).
[CrossRef]

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Han and G. Li, “Sensitivity limits and degradations in OD8PSK,” IEEE Photon. Technol. Lett. 17(3), 720–722 (2005).
[CrossRef]

IEEE Trans. Commun.

H. Leib, “Data-aided noncoherent demodulation of DPSK,” IEEE Trans. Commun. 43(2), 722–725 (1995).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Enhanced sensitivity of DxPSK receiver by using data-aided phase noise estimation algorithm,” in Opto-Electronics and Communications Conference (OECC 2009), paper WV3.

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Quality monitoring of DxPSK signals by using differential phasor diagram,” to appear in IEEE Photon. Technol. Lett.

P. J. Winzer and A. H. Gnauck, “112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid,” in Proceedings of European Conference of Optical Communication (ECOC 2008), paper Th.3.E.5.

T. Tokle, M. Serbay, J. B. Jensen, W. Rosenkranz, and P. Jeppesen, “Advanced modulation formats for transmission systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2008) (Optical Society of America, Washington, DC, 2008), paper OMI1.
[CrossRef] [PubMed]

N. Kikuchi, and S. Sasaki, “Sensitivity improvement of incoherent multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) signaling with non-Euclidean metric and MSPE (multi symbol phase estimation),” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2009) (Optical Society of America, Washington, DC, 2009), paper OWG1.
[PubMed]

J. G. Proakis, Digital Communications, 4th ed., (McGraw-Hill, New York, 2001).

H. Masuda, A. Sano, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, “20.4-Tb/s (204x111 Gb/s) transmission over 240 km using bandwidth-maximized hybrid Raman/EDFAs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2007) (Optical Society of America, Washington, DC, 2007), paper PDP20.
[PubMed]

A. H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-band transmission of polarization-multiplexed RZ-DQPSK signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2007) (Optical Society of America, Washington, DC, 2007), paper PDP19.
[PubMed]

T. Ito, S. Fujita, E. L. T. de Gabory, S. Shioiri, K. Fukuchi, Y. Aono, Y. Yano, and M. Nishino, “Precise analysis of transmission impairments of Pol-Mux 110Gb/s RZ-DQPSK with automatic Pol-Dmux using straight 2,000-km SMF line,” in Proceedings of European Conference of Optical Communication (ECOC 2008), paper We.1.E.6.

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Adjustment-free DxPSK receiver based on single delay interferometer using 120-degree optical hybrid,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2009) (Optical Society of America, Washington, DC, 2009), paper OMM2.
[PubMed]

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Plug-and-play phasor monitor for DxPSK signals based on single delay-interferometer using a 3x3 optical coupler,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2008) (Optical Society of America, Washington, DC, 2008), paper OThW4.
[PubMed]

M. Serbay, T. Tokle, P. Jeppesen, and W. Rosenkranz, “42.8 Gbit/s, 4 bits per symbol 16-ary inverse-RZ-QASK-DQPSK transmission experiment without Polmux,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (OFC/NFOEC 2006) (Optical Society of America, Washington, DC, 2006), paper OThL2.

M. Serbay, C. Wree, and W. Rosenkranz, “Experimental investigation of RZ-8DPSK at 3x10.7Gb/s,” in IEEE LEOS annual meeting, paper WE3, pp. 483–484, Sydney, Australia (2005).
[CrossRef]

J. B. Jensen, T. Tokle, C. Peucheret, and P. Jeppesen, “Transmission of multilevel 60 Gbit/s polarization multiplexed RZ-D8PSK using only 10 Gbit/s equipment,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (OFC/NFOEC 2007) (Optical Society of America, Washington, DC, 2007), paper OWM1.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic diagram of the PDM 16ADPSK transmitter

Fig. 2.
Fig. 2.

(a) Trajectories of the complex electric field, E, of a conventional chirp-free MZ modulator with a finite ER of 16 dB. Open circles indicate the operating points of mark and space when the on-off ratio was set to 3.9 dB. (b) Phase errors (i.e., angle between the mark and the space on the phasor diagram caused by the finite ER of the MZ modulator).

Fig. 3.
Fig. 3.

Phase-distortion-free ASK modulation by using a QPSK modulator.

Fig. 4.
Fig. 4.

(a) Differential phasor of 40.5-Gb/s D8PSK tributary. (b) 54-Gb/s 16ADPSK signal. (left) measured differential phasor. (right) intensity eye diagram

Fig. 5.
Fig. 5.

Configuration of 54-Gb/s (108-Gb/s with PDM) 16ADPSK receiver

Fig. 6.
Fig. 6.

Back-to-back sensitivities of 54-Gb/s and 108-Gb/s PDM 16ADPSK receivers. The dotted lines show the quantum-limited sensitivity.

Fig. 7.
Fig. 7.

Experimental setup of 108-Gb/s PDM 16APDK transmission on a 25-GHz WDM gird

Fig. 8.
Fig. 8.

BER vs. OSNR measured for 108-Gb/s PDM 16ADPSK signals.

Fig. 9.
Fig. 9.

Measured optical spectra of 108-Gb/s PDM 16ADPSK signals (resolution: 1.2 GHz). (a) Single channel without filtering, (b) single channel filtered by IL, and (c) 3 WDM channels.

Fig. 10.
Fig. 10.

Optical spectra of the received signal measured after passing through the 0.25-nm OBPF. (a) 3-channel WDM transmission. (b) Single channel transmission.

Fig. 11.
Fig. 11.

Differential constellations of 108-Gb/s PDM 16ADPSK signal measured after the transmission of 80-km long SSMF.

Metrics