Abstract

We measure the instantaneous electronic nonlinear refractive index of N2, O2, and Ar at room temperature for a 90 fs and 800 nm laser pulse. Measurements are calibrated by post-pulse molecular alignment through a polarization technique. At low intensity, quadratic coefficients n 2 are determined. At higher intensities, a strong negative contribution with a higher nonlinearity appears, which leads to an overall negative nonlinear Kerr refractive index in air above 26 TW/cm2.

© 2009 Optical Society of America

Full Article  |  PDF Article

Corrections

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, "Measurement of high order Kerr refractive index of major air components: erratum," Opt. Express 18, 3011-3012 (2010)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-3-3011

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [CrossRef]
  2. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997).
    [CrossRef]
  3. A. Couairon, “Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses,” Phys. Rev. A 68(1), 015801 (2003).
    [CrossRef]
  4. R. Nuter and L. Bergé, “Pulse chirping and ionization of O2 molecules for the filamentation of femtosecond laser pulses in air,” J. Opt. Soc. Am. B 23(5), 874–884 (2006).
    [CrossRef]
  5. P. Sprangle, E. Esarey, and B. Hafizi, “Propagation and stability of intense laser pulses in partially stripped plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5894–5907 (1997).
  6. H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75(2), 543–557 (2003).
    [CrossRef]
  7. V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
    [CrossRef] [PubMed]
  8. V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
    [CrossRef]
  9. G. Maroulis, “Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2,” J. Chem. Phys. 118(6), 2673–2687 (2003).
    [CrossRef]
  10. E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
    [CrossRef]
  11. R. W. Boyd, Nonlinear optics third ed. Academic Press (2007).
  12. V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
    [CrossRef]
  13. P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
    [CrossRef]
  14. J. Arabat and J. Etchepare, “Nonresonant fifth-order nonlinearities induced by ultrashort intense pulses,” J. Opt. Soc. Am. B 10(12), 2377–2382 (1993).
    [CrossRef]
  15. V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).
  16. G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
    [CrossRef]

2008 (1)

V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
[CrossRef]

2007 (2)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

2006 (1)

2004 (1)

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

2003 (4)

G. Maroulis, “Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2,” J. Chem. Phys. 118(6), 2673–2687 (2003).
[CrossRef]

H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75(2), 543–557 (2003).
[CrossRef]

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

A. Couairon, “Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses,” Phys. Rev. A 68(1), 015801 (2003).
[CrossRef]

2002 (1)

P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
[CrossRef]

2000 (1)

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
[CrossRef]

1997 (2)

E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997).
[CrossRef]

P. Sprangle, E. Esarey, and B. Hafizi, “Propagation and stability of intense laser pulses in partially stripped plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5894–5907 (1997).

1993 (1)

André, Y.-B.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Arabat, J.

Béjot, P.

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Benis, E. P.

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

Bergé, L.

Cernušàk, I.

P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
[CrossRef]

Charalambidis, D.

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

Chaux, R.

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

A. Couairon, “Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses,” Phys. Rev. A 68(1), 015801 (2003).
[CrossRef]

d’Amico, C.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Esarey, E.

P. Sprangle, E. Esarey, and B. Hafizi, “Propagation and stability of intense laser pulses in partially stripped plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5894–5907 (1997).

Etchepare, J.

Faucher, O.

V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
[CrossRef]

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
[CrossRef]

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Franco, M.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Franco, M. A.

Grillon, G.

Guérin, S.

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

Hafizi, B.

P. Sprangle, E. Esarey, and B. Hafizi, “Propagation and stability of intense laser pulses in partially stripped plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5894–5907 (1997).

Henin, S.

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Hertz, E.

V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
[CrossRef]

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
[CrossRef]

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Jauslin, H. R.

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

Kasparian, J.

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Lavorel, B.

V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
[CrossRef]

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
[CrossRef]

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Loriot, V.

V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
[CrossRef]

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Maroulis, G.

G. Maroulis, “Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2,” J. Chem. Phys. 118(6), 2673–2687 (2003).
[CrossRef]

Méchain, G.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Medved, M.

P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14(3), 650–660 (1997).
[CrossRef]

Neogrády, P.

P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
[CrossRef]

Nibbering, E. T. J.

Nuter, R.

Pashayan, Y. T.

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

Prade, B.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Prade, B. S.

Renard, M.

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

Renard, V.

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

Sauerbrey, R.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Seideman, T.

H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75(2), 543–557 (2003).
[CrossRef]

Sprangle, P.

P. Sprangle, E. Esarey, and B. Hafizi, “Propagation and stability of intense laser pulses in partially stripped plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5894–5907 (1997).

Stapelfeldt, H.

H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75(2), 543–557 (2003).
[CrossRef]

Tzallas, P.

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

Tzortzakis, S.

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

Urban, M.

P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
[CrossRef]

Wolf, J.-P.

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Appl. Phys. B (1)

G. Méchain, A. Couairon, Y.-B. André, C. d’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization,” Appl. Phys. B 79(3), 379–382 (2004).
[CrossRef]

J. Chem. Phys. (2)

G. Maroulis, “Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2,” J. Chem. Phys. 118(6), 2673–2687 (2003).
[CrossRef]

E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: Macroscopic interference and concentration measurements,” J. Chem. Phys. 113(16), 6629–6633 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. B (2)

V. Loriot, P. Tzallas, E. P. Benis, E. Hertz, B. Lavorel, D. Charalambidis, and O. Faucher, “Laser-induced field-free alignment of the OCS molecule,” J. Phys. B 40(12), 2503–2510 (2007).
[CrossRef]

V. Loriot, E. Hertz, B. Lavorel, and O. Faucher, “Field-free molecular alignment for measuring ionization probability,” J. Phys. B 41(1), 015604 (2008).
[CrossRef]

Mol. Phys. (1)

P. Neogrády, M. Medved, I. Cernušàk, and M. Urban, “Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method,” Mol. Phys. 100, 541 (2002).
[CrossRef]

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. A (1)

A. Couairon, “Dynamics of femtosecond filamentation from saturation of self-focusing laser pulses,” Phys. Rev. A 68(1), 015801 (2003).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

P. Sprangle, E. Esarey, and B. Hafizi, “Propagation and stability of intense laser pulses in partially stripped plasmas,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 5894–5907 (1997).

Phys. Rev. Lett. (2)

V. Renard, M. Renard, S. Guérin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, “Postpulse molecular alignment measured by a weak field polarization technique,” Phys. Rev. Lett. 90(15), 153601 (2003).
[CrossRef] [PubMed]

V. Loriot, P. Béjot, E. Hertz, O. Faucher, B. Lavorel, S. Henin, J. Kasparian, and J.-P. Wolf, “Higher-order Kerr terms allowing ionization-free filamentation in air,” Phys. Rev. Lett. (Submitted to).

Rev. Mod. Phys. (1)

H. Stapelfeldt and T. Seideman, “Colloquium: Aligning molecules with strong laser pulses,” Rev. Mod. Phys. 75(2), 543–557 (2003).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear optics third ed. Academic Press (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Recorded homodyne birefringence signal [dots] versus pump-probe delay in 1 bar of N2 at room temperature. The mean intensity of the pump is estimated around 500 GW/cm2. The simulated signal [full line] has been adjusted to the experimental data [dots]. From this adjustment, the corresponding variation of the refractive index Δn (b) due to the total nonlinear birefringence [full line] composed by the instantaneous Kerr [dots] and rotational [dash] components is deduced.

Fig. 2.
Fig. 2.

Pure heterodyne signal in a 100 mbar of N2 and argon at room temperature for low, medium, and high intensity. (a 1a 3) N2 at 22 TW/cm2, 42 TW/cm2, and 49 TW/cm2, respectively. (b 1b 3) Ar at 18 TW/cm2, 24 TW/cm2, and 30 TW/cm2), respectively. A sign reversal of the Kerr component at zero delay is observed.

Fig. 3.
Fig. 3.

Nonlinear refractive index variation of air constituents versus intensity at room temperature and 1 atm. (a) N2, (b) O2, (c) Ar, and (d) air.

Tables (2)

Tables Icon

Table 1. Measured n2 coefficients at 1 bar for nitrogen, oxygen, argon, and air in unit of 10-7cm2/TW

Tables Icon

Table 2. Measured coefficients of the nonlinear refractive index expansion of nitrogen, oxygen, argon, and air with Iinv the intensity leading to nKerr‖=0. The uncertainty corresponds to two standard deviations of the fitted values over a set of experimental records.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Shomo (t) Ipr (t) (Δn(t))2 =Ipr (t) (n(t)n(t))2
S± (t)Ipr(t)(Δn(t)±)2
Shetero (t)=S+ (t) S(t) Ipr (t) ( Δ n ( t ) )
Δ nrot (t)=3ρ4n0ε0 Δ α {cos2θ(t)13} ,
Shomo (t) Ipr (t) (3ρΔα4n0ε0(cos2θ13)+23n2I)2 .
Shetero (t) Ipr (t) (3ρΔα4n0ε0(cos2θ13)Δnrot(t)+23n2I+45n4I2+67n6I3+89n8I4+1011n10I5Δnkerr(t)) .

Metrics