Abstract

Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43dB-loss (150km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5bps.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  2. Commercial QKD company web sites: www.idquantique.com, www.magiqtech.com, www.smartquantum.com.
  3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
    [Crossref]
  4. Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Expr. 13, 660–665 (2005).
    [Crossref]
  5. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
    [Crossref]
  6. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
    [Crossref]
  7. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
    [Crossref]
  8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
    [Crossref]
  9. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
    [Crossref] [PubMed]
  10. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
    [Crossref] [PubMed]
  11. M. Koashi, “Unconditional Security of Coherent-State Quantum Key Distribution with a Strong Phase-Reference Pulse,” Phys. Rev. Lett. 93, 120501 (2004).
    [Crossref] [PubMed]
  12. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
    [Crossref]
  13. C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).
  14. W. Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Communication,” Phys. Rev. Lett. 91, 057901 (2003).
    [Crossref] [PubMed]
  15. X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
    [Crossref] [PubMed]
  16. H. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
    [Crossref] [PubMed]
  17. Website for BBN Technologies: www.bbn.com.
  18. Website for the EU project SECOQC: www.secoqc.net.
  19. Although there are still no complete formal security proofs for finite keys, initial efforts in this direction suggest the need for large blocks of data to ensure security, V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing,” Phys Rev. Lett.100, 200501 (2008).
    [Crossref] [PubMed]
  20. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, 1984), pp. 175–179.
  21. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121 (1992).
    [Crossref] [PubMed]
  22. N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).
  23. C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, 013031 (2008).
    [Crossref]
  24. U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
    [Crossref]
  25. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
    [Crossref]
  26. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” App. Phys. Lett. 93, 071104 (2008).
    [Crossref]
  27. A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
    [Crossref]
  28. Website for the EU project Sinphonia: www.sinphonia.org.
  29. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” in Advances in Cryptology - EUROCRYPT ’93. Workshop on the Theory and Application of Cryptographic Techniques - Proceedings (Springer-Verlag, Berlin, 1994), pp. 410–423.
  30. M. N. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and Set Equality,” J. Comput. Syst. Sci. 22, 265–279 (1981).
    [Crossref]
  31. L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” J. Comput. Syst. Sci. 18, 143–154 (1979).
    [Crossref]
  32. J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

2008 (4)

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, 013031 (2008).
[Crossref]

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” App. Phys. Lett. 93, 071104 (2008).
[Crossref]

2007 (4)

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

2006 (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

2005 (4)

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Expr. 13, 660–665 (2005).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

H. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

2004 (2)

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref] [PubMed]

M. Koashi, “Unconditional Security of Coherent-State Quantum Key Distribution with a Strong Phase-Reference Pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref] [PubMed]

2003 (1)

W. Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

2002 (3)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

1992 (1)

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121 (1992).
[Crossref] [PubMed]

1981 (1)

M. N. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and Set Equality,” J. Comput. Syst. Sci. 22, 265–279 (1981).
[Crossref]

1979 (1)

L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” J. Comput. Syst. Sci. 18, 143–154 (1979).
[Crossref]

Acín, A.

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref] [PubMed]

Alloing, B.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Atsushi, U.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Balet, L.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Bennett, C. H.

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121 (1992).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, 1984), pp. 175–179.

Bitauld, D.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Branciard, C.

C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, 013031 (2008).
[Crossref]

C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, 1984), pp. 175–179.

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” in Advances in Cryptology - EUROCRYPT ’93. Workshop on the Theory and Application of Cryptographic Techniques - Proceedings (Springer-Verlag, Berlin, 1994), pp. 410–423.

Brunner, N.

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

Carter, L.

M. N. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and Set Equality,” J. Comput. Syst. Sci. 22, 265–279 (1981).
[Crossref]

L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” J. Comput. Syst. Sci. 18, 143–154 (1979).
[Crossref]

Chauvin, N.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Chen, K.

H. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Diamanti, E.

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

Divochiy, A.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Dixon, A. R.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Dynes, J. F.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Fejer, M. M.

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

Fiore, A.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Gautier, J.-D

J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

Gautier, J.-D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Gerardino, A.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Gisin, N.

C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, 013031 (2008).
[Crossref]

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” App. Phys. Lett. 93, 071104 (2008).
[Crossref]

C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

Gol’tsman, G.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Guinnard, O.

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

Halder, M.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Hiroyuki, S.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

Hwang, W. Y.

W. Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

Inoue, K.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Isao, O.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Jorel, C.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Kazuya, A.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Kazuyuki, Y.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Koashi, M.

M. Koashi, “Unconditional Security of Coherent-State Quantum Key Distribution with a Strong Phase-Reference Pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref] [PubMed]

Korneev, A.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Kunihito, H.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Langrock, C.

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

Li, L. H.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Lo, H.

H. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Lunghi, L.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Lütkenhaus, N.

C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).

Ma, X.

H. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

Marsili, F.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Masaki, I.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Masaru, S.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Minaeva, O.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

Okunev, O.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Peter, D.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Renner, R.

Although there are still no complete formal security proofs for finite keys, initial efforts in this direction suggest the need for large blocks of data to ensure security, V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing,” Phys Rev. Lett.100, 200501 (2008).
[Crossref] [PubMed]

Ribordy, G.

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref] [PubMed]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

Rochas, A.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Salvail, L.

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” in Advances in Cryptology - EUROCRYPT ’93. Workshop on the Theory and Application of Cryptographic Techniques - Proceedings (Springer-Verlag, Berlin, 1994), pp. 410–423.

Scarani, V.

C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, 013031 (2008).
[Crossref]

C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref] [PubMed]

Although there are still no complete formal security proofs for finite keys, initial efforts in this direction suggest the need for large blocks of data to ensure security, V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing,” Phys Rev. Lett.100, 200501 (2008).
[Crossref] [PubMed]

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

Sharpe, A. W.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Shields, A. J.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Expr. 13, 660–665 (2005).
[Crossref]

Shigeru, Y.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Smirnov, K.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Stucki, D.

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

Sunao, N.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Takayuki, K.

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Thew, R. T.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” App. Phys. Lett. 93, 071104 (2008).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Vachtomin, Y.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Waks, E.

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Wang, X.-B.

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

Wegman, M. N.

M. N. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and Set Equality,” J. Comput. Syst. Sci. 22, 265–279 (1981).
[Crossref]

L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” J. Comput. Syst. Sci. 18, 143–154 (1979).
[Crossref]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

Yuan, Z. L.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Expr. 13, 660–665 (2005).
[Crossref]

Zbinden, H.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” App. Phys. Lett. 93, 071104 (2008).
[Crossref]

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Zhang, J.

J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

Zinoni, C.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

App. Phys. Lett. (1)

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” App. Phys. Lett. 93, 071104 (2008).
[Crossref]

Appl. Phys. Lett. (3)

R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
[Crossref]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
[Crossref]

D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Appl. Phys. Lett. 87, 194108 (2005).
[Crossref]

IEEE Journal of Quantum Electronics (1)

J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, “Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC,” IEEE Journal of Quantum Electronics (to be published), arXiv/0812.2840.

J. Comput. Syst. Sci. (2)

M. N. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and Set Equality,” J. Comput. Syst. Sci. 22, 265–279 (1981).
[Crossref]

L. Carter and M. N. Wegman, “Universal Classes of Hash Functions,” J. Comput. Syst. Sci. 18, 143–154 (1979).
[Crossref]

Nature Phot. (2)

U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, “Fast physical random bit generation with chaotic semiconductor lasers,” Nature Phot. 2, 728–732 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Phot. 1, 343–348 (2007).
[Crossref]

New J. Phys. (2)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41.1–41.8 (2002).
[Crossref]

C. Branciard, N. Gisin, and V. Scarani, “Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography,” New J. Phys. 10, 013031 (2008).
[Crossref]

New. J. Phys (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New. J. Phys 8, 32 (2006).
[Crossref]

Opt. Expr. (2)

E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, “100 km differential phase shift quantum key distribution with low jitter up-conversion detectors,” Opt. Expr. 14, 13073–13082 (2006).
[Crossref]

Z. L. Yuan and A. J. Shields, “Continuous operation of a one-way quantum key distribution system over installed telecom fibre,” Opt. Expr. 13, 660–665 (2005).
[Crossref]

Phys. Rev. Lett. (7)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002).
[Crossref] [PubMed]

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,” Phys. Rev. Lett. 92, 057901 (2004).
[Crossref] [PubMed]

M. Koashi, “Unconditional Security of Coherent-State Quantum Key Distribution with a Strong Phase-Reference Pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref] [PubMed]

W. Y. Hwang, “Quantum Key Distribution with High Loss: Toward Global Secure Communication,” Phys. Rev. Lett. 91, 057901 (2003).
[Crossref] [PubMed]

X.-B. Wang, “Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography,” Phys. Rev. Lett. 94, 230503 (2005).
[Crossref] [PubMed]

H. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005).
[Crossref] [PubMed]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121 (1992).
[Crossref] [PubMed]

Quant. Inf. Comp. (1)

C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, “Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography,” Quant. Inf. Comp. 7, 639–664 (2007).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. (1)

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-Photon Detection System for Quantum Optics Applications,” Selected Topics in Quantum Electronics, IEEE Journal of Quant. Electr. 13, 944–951 (2007).
[Crossref]

Other (8)

Website for the EU project Sinphonia: www.sinphonia.org.

G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” in Advances in Cryptology - EUROCRYPT ’93. Workshop on the Theory and Application of Cryptographic Techniques - Proceedings (Springer-Verlag, Berlin, 1994), pp. 410–423.

N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast Quantum Cryptography,” quant-ph/0411022 (2004).

Commercial QKD company web sites: www.idquantique.com, www.magiqtech.com, www.smartquantum.com.

Website for BBN Technologies: www.bbn.com.

Website for the EU project SECOQC: www.secoqc.net.

Although there are still no complete formal security proofs for finite keys, initial efforts in this direction suggest the need for large blocks of data to ensure security, V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing,” Phys Rev. Lett.100, 200501 (2008).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, 1984), pp. 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Coherent one-way protocol. A schematic of the setup is shown (bottom left) with a photograph (above) of the final 19” rack-mountable system, containing the free-running InGaAs detectors (used in the lab trial). On the right we see a satellite image showing the two cities used for this QKD field trial. This experiment was performed with the external cryogen free superconducting detectors.

Fig. 2.
Fig. 2.

Initialisation procedure and security monitoring. The noise is measured (i). Alice’s laser wavelength (current) is scanned to determine the visibility of Bob’s monitoring interferometer (ii). To obtain a more precise value for the visibility we accumulate detections for constructive (iii) and destructive interference (iv). Assuming trusted detectors, we subtract the noise (i) from (iii) and (iv), and obtain the net visibility. During the key exchange, the monitoring rate is minimized by continuously adjusting the laser wavelength (v). This figure shows an example of data recorded with InGaAs detectors and losses equivalent to 80km of fibre.

Fig. 3.
Fig. 3.

Secret bit rate and QBER vs Time. A 10-hour key exchange with 25km of fibre plus 15dB attenuation, equivalent to around 100km of standard fibre with InGaAs detectors. We show the rate averaged over 10 minute intervals. The drops in rate denote periods of auto re-alignment (~20 minutes) when key generation is interrupted.

Fig. 4.
Fig. 4.

Secret bit rate and QBER vs Distance. Rates and errors as a function of the loss, or distance with InGaAs detectors. 31dB corresponds to ~150km of standard fibre.

Fig. 5.
Fig. 5.

Long distance QKD with SSPD. (a) Continuous operation over 3.5 hours for a 43dB-loss line. (b) Rates and errors as a function of loss in the installed, Geneva-Neuchâtel, fibre.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IAE (μ)=μ (1t) +(1V) 1+eμt2eμt ,
K=R μvs [1h(Q(μ))IAE(μ)] .

Metrics