Abstract

Electrical tuning of polarization beam splitting is demonstrated in the structure of symmetrical metal-cladding waveguide by introducing optically nonlinear material into both the coupling prism and the guiding layer. Due to the anisotropy of the coupling material, different excitation conditions for TE and TM modes are obtained, which results in polarization-dependent reflections and transmissions. And the splitting effect of the two orthogonally polarized beams can be manipulated through an electrical modulation of the guiding layer properties.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A broad-angle polarization beam splitter based on a simple dielectric periodic structure

Yuan Zhang, Yurong Jiang, Wei Xue, and Sailing He
Opt. Express 15(22) 14363-14368 (2007)

Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter

Rong-Chung Tyan, Atul A. Salvekar, Hou-Pu Chou, Chuan-Cheng Cheng, Axel Scherer, Pang-Chen Sun, Fang Xu, and Yeshayahu Fainman
J. Opt. Soc. Am. A 14(7) 1627-1636 (1997)

Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays

Guoxing Zheng, Guogen Liu, Mitchell Guy Kenney, Zile Li, Ping’an He, Song Li, Zhi Ren, and Qiling Deng
Opt. Express 24(6) 6749-6757 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. B. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30, 1434–1436 (2005).
    [Crossref] [PubMed]
  2. C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
    [Crossref]
  3. J. B. Feng and Z. P. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32, 1662–1664 (2007).
    [Crossref] [PubMed]
  4. H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
    [Crossref]
  5. J. M. Zhao, Y. Chen, and Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
    [Crossref]
  6. S. Y. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003).
    [Crossref] [PubMed]
  7. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006).
    [Crossref] [PubMed]
  8. L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004).
    [Crossref] [PubMed]
  9. X. Y. Ao and S. L. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005).
    [Crossref] [PubMed]
  10. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “A polarizing beam splitter using negative refraction of photonic crystals,” Opt. Express 13, 7699–7707 (2005).
    [Crossref] [PubMed]
  11. H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
    [Crossref]
  12. H. A. Macleod, Thin-film optical filters (Adam Hilger, Bristol, 1986).
    [Crossref]
  13. G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J Appl. Phys. 38, 1941–1943 (1967).
    [Crossref]
  14. L. R. Dalton, “Rational design of organic electro-optic materials,” J Phys-Condens Mat 15, R897–R934 (2003).
    [Crossref]

2008 (1)

J. M. Zhao, Y. Chen, and Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

2007 (3)

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
[Crossref]

J. B. Feng and Z. P. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett. 32, 1662–1664 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (3)

2004 (2)

L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004).
[Crossref] [PubMed]

H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
[Crossref]

2003 (2)

1967 (1)

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J Appl. Phys. 38, 1941–1943 (1967).
[Crossref]

Ao, X. Y.

Bond, W. L.

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J Appl. Phys. 38, 1941–1943 (1967).
[Crossref]

Boyd, G. D.

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J Appl. Phys. 38, 1941–1943 (1967).
[Crossref]

Cai, J. B.

Cao, Z. Q.

H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
[Crossref]

Carter, H. L.

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J Appl. Phys. 38, 1941–1943 (1967).
[Crossref]

Chang, S. H.

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

Chen, Y.

J. M. Zhao, Y. Chen, and Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Chiu, T. C.

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

Dalton, L. R.

L. R. Dalton, “Rational design of organic electro-optic materials,” J Phys-Condens Mat 15, R897–R934 (2003).
[Crossref]

Dardano, P.

De La Rue, R. M.

Feng, J. B.

Feng, Y. J.

J. M. Zhao, Y. Chen, and Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Gallet, J. F.

He, S. L.

Jiang, J. H.

Jugessur, A.

Kim, S. Y.

Krauss, T. F.

Li, F.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
[Crossref]

Li, H. G.

H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
[Crossref]

Liu, W.

Lu, H. F.

H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
[Crossref]

Luo, H.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
[Crossref]

Macleod, H. A.

H. A. Macleod, Thin-film optical filters (Adam Hilger, Bristol, 1986).
[Crossref]

Mazilu, M.

Mocella, V.

Moretti, L.

Nordin, G. P.

Park, W.

Ren, Z.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
[Crossref]

Rendina, I.

Schonbrun, E.

Shen, Q. S.

H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
[Crossref]

Shu, W.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
[Crossref]

Summers, C. J.

Tai, C. Y.

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

Wu, L. J.

Wu, Q.

Yamashita, T.

Zhao, J. M.

J. M. Zhao, Y. Chen, and Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

Zhou, L. B.

Zhou, Z. P.

Appl. Phys. B-Lasers and Optics (1)

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B-Lasers and Optics 87, 283–287 (2007).
[Crossref]

Appl. Phys. Lett. (2)

J. M. Zhao, Y. Chen, and Y. J. Feng, “Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure,” Appl. Phys. Lett. 92, 071114 (2008).
[Crossref]

H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, “Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,” Appl. Phys. Lett. 85, 4579–4581 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Technol. Lett. 19, 1448–1450 (2007).
[Crossref]

J Appl. Phys. (1)

G. D. Boyd, W. L. Bond, and H. L. Carter, “Refractive index as a function of temperature in LiNbO3,” J Appl. Phys. 38, 1941–1943 (1967).
[Crossref]

J Phys-Condens Mat (1)

L. R. Dalton, “Rational design of organic electro-optic materials,” J Phys-Condens Mat 15, R897–R934 (2003).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Other (1)

H. A. Macleod, Thin-film optical filters (Adam Hilger, Bristol, 1986).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Structure of the SMCW for tunable PBS.

Fig. 2.
Fig. 2.

Calculated reflectivity and transmissivity with respect to the incident angle for TE-and TM-polarized light.

Fig. 3.
Fig. 3.

Experimental setup. PD: photodetector; EOM: EO modulator; AP: aperture.

Fig. 4.
Fig. 4.

Experimental measurements of tunable PBS. (a) θ=5.884°; (b) θ=5.941°.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[BC]={Πj=15[cosδjisinδjηjiηjsinδjcosδj]}[1η6],
ηj={njcosθj,TEmodenjcosθj,TMmode ,
R=(η0BCη0B+C)(η0BCη0B+C)* .
T=4η0η6(η0B+C)(η0B+C)*.

Metrics