Abstract

We demonstrate experimentally the formation of three-dimensional (3D) reconfigurable photonic lattices in a bulk nonlinear crystal by employing the optical induction technique. Such 3D lattices are established by inducing 2D square lattices in two orthogonal directions. The induced 3D periodic index structures are monitored by plane-wave guidance and Brillouin zone spectroscopy. Enhanced discrete diffraction due to the waveguide modulation and coupling in 3D lattices is also observed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [CrossRef]
  2. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283 (1993).
    [CrossRef]
  3. Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001).
    [CrossRef]
  4. A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
    [CrossRef]
  5. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
    [CrossRef]
  6. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
    [CrossRef] [PubMed]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  8. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
    [CrossRef]
  9. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
    [CrossRef]
  10. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
    [CrossRef] [PubMed]
  11. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27(22), 2019–2021 (2002).
    [CrossRef]
  12. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
    [CrossRef] [PubMed]
  13. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
    [CrossRef] [PubMed]
  14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
    [CrossRef] [PubMed]
  15. M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87(25), 254102 (2001).
    [CrossRef] [PubMed]
  16. G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999).
    [CrossRef]
  17. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
    [CrossRef] [PubMed]
  18. Y. V. Kartashov, L. Torner, and D. N. Christodoulides, “Soliton dragging by dynamic optical lattices,” Opt. Lett. 30(11), 1378–1380 (2005).
    [CrossRef] [PubMed]
  19. C. R. Rosberg, I. L. Garanovich, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Demonstration of all-optical beam steering in modulated photonic lattices,” Opt. Lett. 31(10), 1498–1500 (2006).
    [CrossRef] [PubMed]
  20. K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
    [CrossRef] [PubMed]
  21. K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
    [CrossRef] [PubMed]
  22. I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007).
    [CrossRef] [PubMed]
  23. A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
    [CrossRef]
  24. P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
    [CrossRef] [PubMed]
  25. H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007).
    [CrossRef] [PubMed]
  26. Z. Chen, and J. Yang, “Controlling light in reconfigurable photonic lattices,” in Nonlinear Optics and Applications, H. Abdeldayem and D. O. Frazier, eds. (Research Signpost, 2007).
  27. G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
    [CrossRef] [PubMed]
  28. B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
    [CrossRef]
  29. T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006).
    [CrossRef] [PubMed]
  30. J. Xavier, P. Rose, J. Joseph, K. Singh, and C. Denz, reported independent work on optical induction of 3D lattices at the Topical Meeting on Photorefractive Materials, Effects, and Devices, Germany, June 2009.

2009

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

2008

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
[CrossRef] [PubMed]

2007

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007).
[CrossRef] [PubMed]

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
[CrossRef] [PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007).
[CrossRef] [PubMed]

2006

T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006).
[CrossRef] [PubMed]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

C. R. Rosberg, I. L. Garanovich, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Demonstration of all-optical beam steering in modulated photonic lattices,” Opt. Lett. 31(10), 1498–1500 (2006).
[CrossRef] [PubMed]

2005

Y. V. Kartashov, L. Torner, and D. N. Christodoulides, “Soliton dragging by dynamic optical lattices,” Opt. Lett. 30(11), 1378–1380 (2005).
[CrossRef] [PubMed]

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

2004

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
[CrossRef] [PubMed]

2003

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

2002

Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27(22), 2019–2021 (2002).
[CrossRef]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

2001

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001).
[CrossRef]

M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87(25), 254102 (2001).
[CrossRef] [PubMed]

2000

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

1999

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999).
[CrossRef]

1998

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

1997

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

1993

Ablowitz, M. J.

M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87(25), 254102 (2001).
[CrossRef] [PubMed]

Aitchison, J. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[CrossRef] [PubMed]

Alexander, T. J.

T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006).
[CrossRef] [PubMed]

Assanto, G.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

Bartal, G.

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

Bersch, C.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Blaaderen, A.

A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Buljan, H.

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Chen, Z.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
[CrossRef] [PubMed]

Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27(22), 2019–2021 (2002).
[CrossRef]

Christodoulides, D. N.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
[CrossRef] [PubMed]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

Y. V. Kartashov, L. Torner, and D. N. Christodoulides, “Soliton dragging by dynamic optical lattices,” Opt. Lett. 30(11), 1378–1380 (2005).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

Cianci, E.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Cohen, O.

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

de Sterke, C. M.

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Denz, C.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Desyatnikov, A. S.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Dreisow, F.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

Eisenberg, H. S.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[CrossRef] [PubMed]

Eugenieva, E. D.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
[CrossRef] [PubMed]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Fleischer, J. W.

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Foglietti, V.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Frantzeskakis, D. J.

P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
[CrossRef] [PubMed]

Gagnon, J.

P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
[CrossRef] [PubMed]

Garanovich, I. L.

Gates, B.

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001).
[CrossRef]

Gorishnyy, T.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Heinrich, M.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Imbrock, J.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Jang, J.-H.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Kartashov, Y. V.

Kevrekidis, P. G.

P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
[CrossRef] [PubMed]

Kip, D.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007).
[CrossRef] [PubMed]

C. R. Rosberg, I. L. Garanovich, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Demonstration of all-optical beam steering in modulated photonic lattices,” Opt. Lett. 31(10), 1498–1500 (2006).
[CrossRef] [PubMed]

T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006).
[CrossRef] [PubMed]

Koh, C.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Kooi, S.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Krolikowski, W.

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Laporta, P.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Leblond, H.

H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007).
[CrossRef] [PubMed]

Lederer, F.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

Lehmann, O.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

Lenz, G.

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999).
[CrossRef]

Li, Z.-Y.

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Lobino, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Longhi, S.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Makris, K. G.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
[CrossRef] [PubMed]

Maldovan, M.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Malomed, B. A.

H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007).
[CrossRef] [PubMed]

P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
[CrossRef] [PubMed]

Manela, O.

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

Marangoni, M.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Martin, H.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
[CrossRef] [PubMed]

McCarthy, K.

Mihalache, D.

H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007).
[CrossRef] [PubMed]

Morandotti, R.

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[CrossRef] [PubMed]

Muller, K.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

Musslimani, Z. H.

M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87(25), 254102 (2001).
[CrossRef] [PubMed]

Neshev, D.

Neshev, D. N.

Nolte, S.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007).
[CrossRef] [PubMed]

Ostrovskaya, E. A.

T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006).
[CrossRef] [PubMed]

Peleg, O.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
[CrossRef] [PubMed]

Pertsch, T.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007).
[CrossRef] [PubMed]

Ramponi, R.

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

Rosberg, C. R.

Ruel, R.

A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Rüter, C. E.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Sears, S.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

Segev, M.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008).
[CrossRef] [PubMed]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

Shandarova, K.

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Silberberg, Y.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[CrossRef] [PubMed]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Stegeman, G. I.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

Stuke, M.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

Sukhorukov, A. A.

Szameit, A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007).
[CrossRef] [PubMed]

Talanina, I.

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999).
[CrossRef]

Tang, L.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Terhalle, B.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Thomas, E. L.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Torner, L.

Träger, D.

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

Tuennermann, A.

Tünnermann, A.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Ullal, C. K.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Wanke, M. C.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

Wen, Q.

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

Wiltzius, P.

A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Xia, Y.

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001).
[CrossRef]

Yablonovitch, E.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

Adv. Funct. Mater.

J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007).
[CrossRef]

Adv. Mater.

Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001).
[CrossRef]

Appl. Phys. B

B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Phys.

A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009).
[CrossRef]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000).
[CrossRef] [PubMed]

A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998).
[CrossRef]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002).
[CrossRef] [PubMed]

P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007).
[CrossRef] [PubMed]

H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004).
[CrossRef] [PubMed]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000).
[CrossRef] [PubMed]

M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87(25), 254102 (2001).
[CrossRef] [PubMed]

G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999).
[CrossRef]

S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006).
[CrossRef] [PubMed]

K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009).
[CrossRef] [PubMed]

T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006).
[CrossRef] [PubMed]

Science

M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997).
[CrossRef] [PubMed]

Other

Z. Chen, and J. Yang, “Controlling light in reconfigurable photonic lattices,” in Nonlinear Optics and Applications, H. Abdeldayem and D. O. Frazier, eds. (Research Signpost, 2007).

J. Xavier, P. Rose, J. Joseph, K. Singh, and C. Denz, reported independent work on optical induction of 3D lattices at the Topical Meeting on Photorefractive Materials, Effects, and Devices, Germany, June 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic drawing of the optical induction method for 3D photonic lattices. The photorefractive strontium barium niobate (SBN) crystal is a uniaxial crystal, with its crystalline c-axis oriented along y-direction. The two lattice-inducing beams are launched along two crystalline a-axes (oriented along x- and z-directions). (b, c) Illustration of induced lattice structures under self-focusing and self-defocusing nonlinearity, respectively.

Fig. 2
Fig. 2

Experimental setup for inducing and monitoring 3D photonic lattices in a biased SBN crystal. The left two beam paths are for two lattice-inducing beams, the third path is for Brillouin zone spectrum measurement, and the forth (far right) path is for testing the diffraction of a focused probe beam. RT: Reversed telescope; BS: Beam splitter; RD: Rotating diffuser; L: Lens; MS: Amplitude Mask; M: Mirror; F: Fourier-plane Filter; λ/2: half-wave plate.

Fig. 3
Fig. 3

Lattice inducing beams and their Fourier spectra for propagation along z-direction (10 mm crystal length, top) and x-direction (5mm crystal length, bottom). (a, b) shows the intensity patterns of the lattice beams at crystal input (a) and output (b) facets, and (c) shows the Fourier spectra of the lattice beams at crystal output.

Fig. 4
Fig. 4

Experimental results for induced lattices with self-focusing nonlinearity. (a) Plane-wave guidance from the perpendicular direction of the induced 2D lattices; (b) Plane-wave guidance of the induced 3D lattices; (c) Fourier transformation of (b); (d) Brillouin zone spectroscopy of (b). The upper and lower rows correspond to results obtained along 10mm and 5mm of crystal lengths.

Fig. 5
Fig. 5

Near field patterns (a, c) and BZ spectra (b, d) of induced 3D “backbone” lattices with self-defocusing nonlinearity. (a, b) and (c, d) correspond to results obtained along 10mm and 5mm side of the crystal, respectively.

Fig. 6
Fig. 6

Experimental observation (top) and numerical simulation (bottom) of diffraction enhancement in a 3D photonic lattice. (a, b) Input and output of a probe beam propagating along z-direction without lattice; (c-e) its output discrete diffraction patterns after propagating through the lattice when the intensity of the lattice-inducing beam along x-direction (see Fig. 1) is gradually increased.

Metrics