Abstract

New wide single mode strip and grating loaded waveguide on thin silicon-on-insulator CMOS compatible structure is proposed and analyzed. Waveguide is built by silicon nitride strip and gratings placed on silica cover of slab silicon. This structure is similar to conventional strip-loaded waveguide but differs by additional gratings near the strip sides. Numerical 3D simulations by FDTD and BPM prove that the side gratings with period 0.6 µm and depth 0.16 µm provide the high Figure of merit for higher order mode suppression and built quasi-single-mode waveguide with mode size ~10 µm and propagation loss ~0.3 dB/cm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, Silicon Photonics. State of the Art (John Wiley & Sons, Ltd, 2008).
  2. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991).
    [CrossRef]
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23(1), 401-412 (2005).
    [CrossRef]
  4. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, "Low-loss silicon-on-insulator shallowridge TE and TM waveguides formed using thermal oxidation," Appl. Opt. 48(5), 958-963 (2009).
    [CrossRef]
  5. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17(6), 4752-4757 (2009).
    [CrossRef]
  6. D. Taillaert, Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact twodimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15(9), 1249-1251 (2003).
    [CrossRef]
  7. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Express 15(4), 1567-1578 (2007).
    [CrossRef]
  8. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-oninsulator nanophotonic waveguides," Opt. Lett. 32(19), 2801-2803 (2007).
    [CrossRef]
  9. A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.
  10. A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely Tunable Reconfigurable Optical Add/Drop Multiplexers in Silicon-on-Insulator Technology: a New Approach," in Silicon Photonics, V.M.N. Passaro Ed., Research Signpost Publ., Trivandrum, Kerala, India: ISBN: 81-308-0077-2, 47-77 (2006).
  11. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, "A novel ultra-low loss hollowcore waveguide using subwavelength high-contrast gratings," Opt. Express 17(3), 1508-1517 (2009).
    [CrossRef]
  12. A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37(8), 775-776 (2007).
    [CrossRef]
  13. A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconfigurable optical multiplexers," Quantum Electron. 38(5), 445-451 (2008).
    [CrossRef]
  14. A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Express 16(5), 3101-3113 (2008).
    [CrossRef]
  15. F. De Leonardis, A. V. Tsarev, and V. M. Passaro, "Optical properties of new wide heterogeneous waveguides with thermo optical shifters," Opt. Express 16(26), 21333-21338 (2008).
    [CrossRef]
  16. www.rsoftdesign.com, Rsoft Photonic CAD Suite, ver. 8.0, single license (2007).
  17. R. V. Ramaswamy, "Strip loaded film waveguides," Bell Syst. Tech. J. 53, 697-704 (1974).
  18. Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
    [CrossRef]
  19. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Lightwave Technol. 22, 1734-1740 (2004).
    [CrossRef]
  20. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  21. H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003).
    [CrossRef]
  22. M. Borselli, Th. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13(5), 1515-1530 (2005).
    [CrossRef]

2009

2008

2007

2005

2004

2003

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003).
[CrossRef]

D. Taillaert, Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact twodimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

D. Taillaert, Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact twodimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

1991

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991).
[CrossRef]

1974

R. V. Ramaswamy, "Strip loaded film waveguides," Bell Syst. Tech. J. 53, 697-704 (1974).

1956

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Baets, R.

Beckx, S.

Bellutti, P.

Bienstman, P.

Bogaerts, W.

Borselli, M.

Cardenas, J.

Chang-Hasnain, C. J.

Chen, E.

Chen, L.

Crivellari, M.

Daldosso, N.

De Leonardis, F.

Dumon, P.

Fang, Q.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Girardini, M.

Harold Chong, D.

D. Taillaert, Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact twodimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

He, Y.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Johnson, Th.

Karagodsky, V.

Kikuta, H.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003).
[CrossRef]

Koch, T. L.

Li, F.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Li, J.

Lipson, M.

Liu, Y.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Lui, A.

Luyssaert, B.

Melchiorri, M.

Pafchek, R.

Painter, O.

Passaro, V. M.

Passaro, V. M. N.

Pavesi, L.

Pesala, B.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991).
[CrossRef]

Pluk, E.

Poitras, C. B.

Preston, K.

Pucker, G.

Ramaswamy, R. V.

R. V. Ramaswamy, "Strip loaded film waveguides," Bell Syst. Tech. J. 53, 697-704 (1974).

Riboli, F.

Robinson, J. T.

Rytov, S. M.

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991).
[CrossRef]

Sedgwick, F. G.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991).
[CrossRef]

Taillaert, D.

Thourhout, D. V.

Toyota, H.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003).
[CrossRef]

Tsarev, A. V.

A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Express 16(5), 3101-3113 (2008).
[CrossRef]

F. De Leonardis, A. V. Tsarev, and V. M. Passaro, "Optical properties of new wide heterogeneous waveguides with thermo optical shifters," Opt. Express 16(26), 21333-21338 (2008).
[CrossRef]

A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconfigurable optical multiplexers," Quantum Electron. 38(5), 445-451 (2008).
[CrossRef]

A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37(8), 775-776 (2007).
[CrossRef]

Tummidi, R.

Van Campenhout, J.

Van Thourhout, D.

Webster, M. A.

Wiaux, V.

Xin, H.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Yang, L.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Yu, W.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003).
[CrossRef]

Zhou, Y.

Appl. Opt.

Bell Syst. Tech. J.

R. V. Ramaswamy, "Strip loaded film waveguides," Bell Syst. Tech. J. 53, 697-704 (1974).

IEEE Photon. Technol. Lett.

D. Taillaert, Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact twodimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15(9), 1249-1251 (2003).
[CrossRef]

J. Lightwave Technol.

J. Quantum Electron.

R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991).
[CrossRef]

Opt. Eng.

Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003).
[CrossRef]

Quantum Electron.

A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37(8), 775-776 (2007).
[CrossRef]

A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconfigurable optical multiplexers," Quantum Electron. 38(5), 445-451 (2008).
[CrossRef]

Sov. Phys. JETP

S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Other

www.rsoftdesign.com, Rsoft Photonic CAD Suite, ver. 8.0, single license (2007).

G. T. Reed, Silicon Photonics. State of the Art (John Wiley & Sons, Ltd, 2008).

A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.

A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely Tunable Reconfigurable Optical Add/Drop Multiplexers in Silicon-on-Insulator Technology: a New Approach," in Silicon Photonics, V.M.N. Passaro Ed., Research Signpost Publ., Trivandrum, Kerala, India: ISBN: 81-308-0077-2, 47-77 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1.
Fig.1.

General view of SGL waveguide and the field distribution of the two first guided TE-modes studied by 3D BPM. a) m=0; b) m=1. d=0.16 µm, hc =0.12 µm; W0 =32 µm, W=10 µm, Wg =2 µm.

Fig.2.
Fig.2.

Simulation of rectangular shaped grating by FDTD. a) general view of the 2D waveguide with the grating loading; b) Optical loss in 2D waveguide with the grating for different values of hc and d (dots and curves corresponds to FDTD and BPM simulations, respectively); (c) Optical loss in 3D SGL waveguide obtained by different ways: 1- 3D FDTD, 2 – 3D BPM for equivalent waveguide; 3 - 3D BPM for equivalent waveguide with corrected (by 1.13) value of ni .

Fig.3.
Fig.3.

Simulated parameters of optical loss in ideal SGL waveguide (SLoss=0) studied by 3D BPM. a) For the fundamental mode (m=0); b) For the first mode (m=1). d=0.16 µm, W0 =32 µm, W=10 µm.

Fig.4.
Fig.4.

Simulated parameters of the additional optical loss in SGL waveguide studied by 3D BPM. a) as a function of waveguide spacing Wg for different Sloss (in dB/cm units) for hc =0.12 µm; b) as a function of hc for different Wg (SLoss=0.1 dB/cm). d=0.16 µm, W0 =32 µm, W=10 µm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

no2=(1f)n12+fn22,
ne2=(n1n2)2[(1f)n22+fn12],

Metrics