Abstract

A strongly coupled quantum dot-micropillar cavity system is studied under variation of the excitation power. The characteristic double peak spectral shape of the emission with a vacuum Rabi splitting of 85 µeV at low excitation transforms gradually into a single broad emission peak when the excitation power is increased. Modelling the experimental data by a recently published formalism [Laussy et al., Phys. Rev. Lett. 101, 083601 (2008)] yields a transition from strong coupling towards weak coupling which is mainly attributed to an excitation power driven decrease of the exciton-photon coupling constant.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
    [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
    [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  4. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
    [CrossRef]
  5. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008).
    [CrossRef] [PubMed]
  6. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
    [CrossRef]
  7. L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
    [CrossRef]
  8. F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008).
    [CrossRef]
  9. Y. Yamamoto, T. Tassone, and H. Cao, "Biexcitonic Effects in Microcavities," in Semiconductor Cavity Quantum Electrodynamics, G. Höhler, ed. (Springer, Berlin/Heidelberg 2000), pp. 4958.
  10. Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
    [CrossRef]
  11. E. Jaynes, and F. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE 51, 89-109 (1963).
    [CrossRef]
  12. L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008).
    [CrossRef]
  13. E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
    [CrossRef]
  14. J.-M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," in Single Quantum Dots, Topics Appl. Phys. 90, P. Michler, ed. (Springer, Berlin/Heidelberg 2003), pp. 269315.
  15. L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
    [CrossRef]
  16. Guoqiang Cui, and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006).
  17. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
    [CrossRef]
  18. K. J. Vahala, "Optical Microcavities," Nature 424, 839-847 (2003).
    [CrossRef] [PubMed]
  19. A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
    [CrossRef]
  20. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
    [CrossRef]
  21. S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
    [CrossRef]
  22. S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
    [CrossRef] [PubMed]
  23. I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
    [CrossRef]
  24. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
    [CrossRef] [PubMed]
  25. A. Imamoglu, "Phase-space filling and stimulated scattering of composite bosons," Phys. Rev. B 57, R4195- R4197 (1998).
    [CrossRef]

2009 (1)

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

2008 (5)

F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef]

L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008).
[CrossRef]

E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
[CrossRef]

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
[CrossRef]

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

2006 (4)

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

Guoqiang Cui, and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006).

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

2005 (2)

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

2004 (2)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

2003 (1)

K. J. Vahala, "Optical Microcavities," Nature 424, 839-847 (2003).
[CrossRef] [PubMed]

2000 (1)

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

1999 (1)

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

1998 (1)

A. Imamoglu, "Phase-space filling and stimulated scattering of composite bosons," Phys. Rev. B 57, R4195- R4197 (1998).
[CrossRef]

1997 (1)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
[CrossRef]

1996 (1)

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

1963 (1)

E. Jaynes, and F. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE 51, 89-109 (1963).
[CrossRef]

Amann, M.-C.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Andreani, L.

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

Angele, J.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Bawendi, M. G.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Bayer, M.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

Berthelot, A.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Böhm, G.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Cassabois, G.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Cirac, J. I.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
[CrossRef]

Cui, Guoqiang

Guoqiang Cui, and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006).

Cummings, F.

E. Jaynes, and F. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE 51, 89-109 (1963).
[CrossRef]

del Valle, E.

E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef]

Delalande, C.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Empedocles, S. A.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Fafard, S.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

Favero, I.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Ferreira, R.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Forchel, A.

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

Gerard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Gérard, J. M.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Gérard, J.-M.

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Gibbs, H.M.

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hauke, N.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Hawrylak, P.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

Heindel, T.

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Höfling, S.

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Imamoglu, A.

A. Imamoglu, "Phase-space filling and stimulated scattering of composite bosons," Phys. Rev. B 57, R4195- R4197 (1998).
[CrossRef]

Jaynes, E.

E. Jaynes, and F. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE 51, 89-109 (1963).
[CrossRef]

Kamp, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

Kaniber, M.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Keldysh, L. V.

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Kimble, H. J.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
[CrossRef]

Kira, M.

L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008).
[CrossRef]

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Kistner, C.

Koch, S.W.

L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008).
[CrossRef]

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Kristensen, P. T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
[CrossRef]

Kubanek, A.

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Laucht, A.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Laussy, F. P.

F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef]

E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
[CrossRef]

Lemaitre, A.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Lodahl, P.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Löffler, A.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Mabuchi, H.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
[CrossRef]

Makhonin, M. N.

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Mørk, J.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
[CrossRef]

Naesby, A.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
[CrossRef]

Norris, D. J.

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Panzarini, G.

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Ponomarev, I. V.

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

Rahimi-Iman, A.

Raymer, M. G.

Guoqiang Cui, and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006).

Reinecke, T. L.

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Roussignol, Ph.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Scherer, A.

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Schneebeli, L.

L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008).
[CrossRef]

Schneider, C.

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16, 15006-15012 (2008).
[CrossRef] [PubMed]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Sek, G.

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Shelykh, I. A.

E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
[CrossRef]

Souza, F. M.

E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
[CrossRef]

Stern, O.

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

Stobbe, S.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Strauß, M.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

Suhr, T.

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
[CrossRef]

Tejedor, C.

F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef]

Vahala, K. J.

K. J. Vahala, "Optical Microcavities," Nature 424, 839-847 (2003).
[CrossRef] [PubMed]

Voisin, C.

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zoller, P.

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, "Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions," Appl. Phys. Lett. 86, 111105 (2005).
[CrossRef]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150.000," Appl. Phys. Lett. 90, 251109 (2007).
[CrossRef]

JETP Lett. (1)

L. V. Keldysh, V. D. Kulakovskii, S. Reitzenstein, M. N. Makhonin, and A. Forchel, "Interference effects in the emission spectra of quantum dots in high-quality cavities," JETP Lett. 84, 494-499 (2006).
[CrossRef]

Nat. Phys. (1)

Q1. G. Khitrova, H.M. Gibbs, M. Kira, S.W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nat. Phys. 2, 81-90 (2006).
[CrossRef]

Nature (4)

K. J. Vahala, "Optical Microcavities," Nature 424, 839-847 (2003).
[CrossRef] [PubMed]

M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, "Hidden symmetries in the energy levels of excitonic artificial atoms, " Nature 405, 923-926 (2000).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

New J. Phys. (1)

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, and M.-C. Amann, "Electrical control of spontaneous emission and strong coupling for a single quantum dot," New J. Phys. 11, 023034 (2009).
[CrossRef]

Opt. Express (1)

Opt. Letters (1)

S. Reitzenstein, A. Löffler, C. Hofmann, A. Kubanek, M. Kamp, J. P. Reithmaier, A. Forchel, V. D. Kulakovskii, L. V. Keldysh, I. V. Ponomarev, and T. L. Reinecke, "Coherent photonic coupling of semiconductor quantum dots," Opt. Letters 31, 1738-1740 (2006).
[CrossRef]

Phys. Rev. A (2)

Guoqiang Cui, and M. G. Raymer, "Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Phys. Rev. A 73, 053807 (2006).

A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, "Influence of pure dephasing on emission spectra from single photon sources," Phys. Rev. A 78, 045802 (2008).
[CrossRef]

Phys. Rev. B (4)

L. Andreani, G. Panzarini, and J.-M. Gérard, "Strong-coupling regime for quantum boxes in pillar microcavities: Theory," Phys. Rev. B 60, 13276-13279 (1999).
[CrossRef]

E. del Valle, F. P. Laussy, F. M. Souza, and I. A. Shelykh, "Optical spectra of a quantum dot in a microcavity in the nonlinear regime," Phys. Rev. B 78, 085304 (2008).
[CrossRef]

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande, Ph. Roussignol, R. Ferreira, and J. M. Gérard, "Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment," Phys. Rev. B 75, 073308 (2007).
[CrossRef]

A. Imamoglu, "Phase-space filling and stimulated scattering of composite bosons," Phys. Rev. B 57, R4195- R4197 (1998).
[CrossRef]

Phys. Rev. Lett. (5)

J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network," Phys. Rev. Lett. 78, 3221-3224 (1997).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gerard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett. 95, 067401 (2005).
[CrossRef]

L. Schneebeli, M. Kira, and S.W. Koch, "Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy," Phys. Rev. Lett. 101, 097401 (2008).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, "Strong Coupling of Quantum Dots in Microcavities," Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef]

S. A. Empedocles, D. J. Norris, and M. G. Bawendi, "Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots," Phys. Rev. Lett. 77, 3873-3876 (1996).
[CrossRef] [PubMed]

Proc. IEEE (1)

E. Jaynes, and F. Cummings, "Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser," Proc. IEEE 51, 89-109 (1963).
[CrossRef]

Other (2)

Y. Yamamoto, T. Tassone, and H. Cao, "Biexcitonic Effects in Microcavities," in Semiconductor Cavity Quantum Electrodynamics, G. Höhler, ed. (Springer, Berlin/Heidelberg 2000), pp. 4958.

J.-M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," in Single Quantum Dots, Topics Appl. Phys. 90, P. Michler, ed. (Springer, Berlin/Heidelberg 2003), pp. 269315.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Temperature dependent emission spectrum of a 1.6 µm micropillar cavity (Pexc =500 nW). The avoided crossing of the QD exciton line X and the cavity mode C is a clear signature of the strong coupling regime. (b) Corresponding energy dispersion of the two interacting emission modes. The data yields a vacuum Rabi splitting of 80 µeV. Inset: Emission mode linewidths as a function of temperature.

Fig. 2.
Fig. 2.

Excitation power dependent emission spectra of the coupled QD-micropillar system on resonance. The double peak structure reflects the coherent coupling of the excitonic and photonic emission modes at low excitation powers. A single peak emission pattern evolves with increasing excitation power which is attributed to a transition from strong coupling to weak coupling. The experimental data (•) is very well described by theory (solid lines) according to Ref. [8].

Fig. 3.
Fig. 3.

(a) Mode splitting and corresponding coupling constant of the coupled QD excitonmicrocavity system in resonance as a function of the excitation power. The coupling constant g determined by fitting the data in Fig. 2. (b) Exciton linewidth γx as a function of the excitation power.

Fig. 4.
Fig. 4.

Phase diagram Px/g vs. γc/g of the coupled QD exciton-microcavity system. The areas associated with strong coupling (weak coupling) are highlighted in blue (red), where the limit between the two coupling regimes depends on the system parameters. Here, the values g=43 µeV, γx=40 µeV, γc =80 µeV and Pc =10 µeV have been used. The dashed vertical line is related to the standard threshold condition for strong coupling while the solid line takes the particular excitation conditions of the system into account.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔER=g2Γ2,
g=(πe2f)12(4πεrε0m0Vm)12.

Metrics