Abstract

Supercontinuum generation using continuous-wave pumping is usually obtained by pumping a suitable fiber with a high-power fiber laser. Whereas many studies have concentrated in optimizing the dispersion characteristics of the nonlinear medium (the fiber) used to obtain the spectral broadening, very few have actually concentrated in optimizing the pump laser characteristics, and in particular, the dispersion in the cavity. In this paper we experimentally demonstrate that the fiber laser cavity dispersion has a strong influence in Raman fiber laser-pumped continuous-wave supercontinuum generation. We show that anomalous dispersion in the cavity favors spectral broadening over normal dispersion, since large, high-contrast intensity noise appears at the output of the laser. Additionally, we find that there is an optimum value of chromatic dispersion coefficient to obtain the most efficient broadening.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Pei-Lin Hsiung, Yu Chen, Tony Ko, J. Fujimoto, C. J. S. deMatos, S. Popov, J. R. Taylor, and V. Gapontsev, "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5287
    [CrossRef] [PubMed]
  2. S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M.L. Hernanz, and A. Carrasco, "Gain-flattening of fiber Raman amplifiers using non-linear pump spectral broadening," Opt. Commun. 242, 463-469 (2004).
    [CrossRef]
  3. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-17-6615
    [CrossRef] [PubMed]
  4. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
    [CrossRef]
  5. J. Nathan Kutz, C. Lynga, and B. Eggleton, "Enhanced supercontinuum generation through dispersion-management," Opt. Express 13, 3989-3998 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3989
    [CrossRef] [PubMed]
  6. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, and S. Coen, "Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management," Opt. Lett. 31, 2036-2038 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-13-2036
    [CrossRef] [PubMed]
  7. L. Abrardi, S. Martin-Lopez, A. Carrasco-Sanz, F. Rodriguez-Barrios, P. Corredera, M. L. Hernanz, and M. Gonzalez-Herraez, "Experimental study on the role of chromatic dispersion in continuous-wave supercontinuum generation," J. Lightwave Technol. 27, 426-435 (2009). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-27-4-426
    [CrossRef]
  8. S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, L. Abrardi, M. L. Hernanz, and M. Gonzalez-Herraez, "Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation," Opt. Lett. 31, 3477-3479 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-23-3477
    [CrossRef] [PubMed]
  9. R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
    [CrossRef]
  10. G. P. Agrawal "Nonlinear Fiber Optics" (Academic Press, 1995), Chap. 5.
  11. E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
    [CrossRef]
  12. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixinginduced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, 1729-1738 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1729
    [CrossRef]
  13. J. Schroeder, D. Alasia, T. Sylvestre, and S. Coen, "Dynamics of an ultrahigh-repetitionrate passively mode-locked Raman fiber laser," J. Opt. Soc. Am. B 25, 1178-1186 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=josab-25-7-1178
    [CrossRef]
  14. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, B. J. Ainslie, and S. P. Craig, "Cascade Raman soliton fiber ring laser," Opt. Lett. 12, 927-929 (1987). http://www.opticsinfobase.org/abstract.cfm?URI=ol-12-11-927
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (1)

2006 (3)

2005 (3)

2004 (2)

1987 (1)

1977 (1)

R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
[CrossRef]

Abrardi, L.

Ainslie, B. J.

Alasia, D.

Ashkin, A.

R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
[CrossRef]

Babin, S. A.

Bufetov, I. A

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Carrasco, A.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M.L. Hernanz, and A. Carrasco, "Gain-flattening of fiber Raman amplifiers using non-linear pump spectral broadening," Opt. Commun. 242, 463-469 (2004).
[CrossRef]

Carrasco-Sanz, A.

Chen, Yu

Churkin, D. V.

Coen, S.

Corredera, P.

Craig, S. P.

de, C. J. S.

Dianov, E. M.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Eggleton, B.

Fujimoto, J.

Gapontsev, V.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Gomes, A. S. L.

Gonzalez-Herraez, M.

Gouveia-Neto, A. S.

Guryanov, A. N.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Hernanz, M. L.

Hernanz, M.L.

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M.L. Hernanz, and A. Carrasco, "Gain-flattening of fiber Raman amplifiers using non-linear pump spectral broadening," Opt. Commun. 242, 463-469 (2004).
[CrossRef]

Hsiung, Pei-Lin

Ismagulov, A. E.

Jain, R. K.

R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
[CrossRef]

Kablukov, S. I.

Khopin, V. F.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Ko, Tony

Lin, C.

R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
[CrossRef]

Lynga, C.

Maillotte, H.

Martin-Lopez, S.

Mashinsky, V. M.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Matos, C. J. S.

Medvedkov, O. I.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Melkumov, M. A.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Nathan Kutz, J.

Podivilov, E. V.

Popov, S.

Rakitin, A. E.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Rodriguez-Barrios, F.

Schroeder, J.

Shubin, A. V.

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Stolen, R. H.

R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
[CrossRef]

Sylvestre, T.

Taylor, J. R.

Vanholsbeeck, F.

Vedadi, A.

Appl. Phys. Lett. (1)

R. K. Jain, C. Lin, R. H. Stolen, and A. Ashkin, "A tunable multiple Stokes cw fiber Raman oscillator," Appl. Phys. Lett. 31, 89 (1977)
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M.L. Hernanz, and A. Carrasco, "Gain-flattening of fiber Raman amplifiers using non-linear pump spectral broadening," Opt. Commun. 242, 463-469 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Quantum Electron. (1)

E. M. Dianov, I. A Bufetov, V. M. Mashinsky, A. V. Shubin, O. I. Medvedkov, A. E. Rakitin, M. A. Melkumov, V. F. Khopin, and A. N. Guryanov "Raman fibre lasers based on heavily GeO2-doped fibres," Quantum Electron. 35435-441 (2005)
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006)
[CrossRef]

Other (1)

G. P. Agrawal "Nonlinear Fiber Optics" (Academic Press, 1995), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for the SC generation in a 11 km of DSF fiber, pumped by a Raman Cavity Laser. RFL: Raman fiber laser, WDM: wavelength division multiplexer (port R: 1450–1480 nm, port P: 1528–1563 nm, port C: all wavelengths), PC: polarization control, OSA: optical spectrum analizer.

Fig. 2.
Fig. 2.

Spectra (a) and autocorrelation traces (b) of the output of the Raman cavity for Fiber F1 and Fiber F2.

Fig. 3.
Fig. 3.

Output spectra of the supercontinuum generated by pumping 11 km of DSF with the output of the Raman cavities built with Fibers F1 and F2.

Fig. 4.
Fig. 4.

Spectra (a) and autocorrelation traces (b) of the output of the Raman cavity for Fiber F1 and Fiber DCF.

Fig. 5.
Fig. 5.

Output spectra of the fiber laser with fibers F3, F4 and F5 in the cavity

Fig. 6.
Fig. 6.

Autocorrelation traces of the fiber laser with fibers F3 (trace a), F4 (trace b) and F5 (trace c) in the cavity.

Fig. 7.
Fig. 7.

Output spectra of the supercontina generated pumping 11 km of DSF with fibers F3, F4 and F5 in the Raman fiber laser cavity

Tables (2)

Tables Icon

Table 1. Characteristics of the different fibers used in the experiments. D is the dispersion coefficient at the lasing wavelength

Tables Icon

Table 2. Characteristics of the different fibers used in the experiments. D is the dispersion coefficient at the lasing wavelength

Metrics