Abstract

The laser action of Perylene-Red doped in linear, crosslinked, fluorinated and sililated polymeric materials is reported. The purity of dye was found to be a key factor to enhance its solid-state laser behaviour. The samples were transversely pumped at 532 nm, with 5.5 mJ/pulse and 10 Hz repetition rate. Perylene-Red doped copolymers of methyl methacrylate with a 10 vol% proportion of 2,2,2-trifluoroethyl-methacrylate exhibited a lasing efficiency of 26% with a high photostability since the dye laser output remained at the same level after 100,000 pump pulses in the same position of the sample. This lasing behaviour is, to the best of our knowledge, the highest achieved to date for organic, inorganic, and hybrid materials doped with Perylene-Red.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
    [CrossRef]
  2. P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
    [CrossRef]
  3. Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
    [CrossRef] [PubMed]
  4. R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, (Molecular Probes Inc., Eugene, 1989).
  5. Y. Nagao and T. Misono, “Synthesis and properties of N-alkyl-N’-aryl-3,4:9,10-perylene bys(dicarboximide),” Dyes Pigm. 5(3), 171–188 (1984).
    [CrossRef]
  6. A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
    [CrossRef]
  7. M. Schneider and K. Müllen, “Hybrid materials doped with covalently bound perylene dyes through the sol-gel process,” Chem. Mater. 12(2), 352–362 (2000).
    [CrossRef]
  8. T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
    [CrossRef]
  9. R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
    [CrossRef] [PubMed]
  10. R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
    [CrossRef] [PubMed]
  11. M. Canva, P. Georges, J.-F. Perelgritz, A. Brum, F. Chaput, and J.-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34(3), 428–431 (1995).
    [CrossRef] [PubMed]
  12. M. Faloss, M. Canva, P. Georges, A. Brun, F. Chaput, and J. P. Boilot, “Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels,” Appl. Opt. 36(27), 6760–6763 (1997).
    [CrossRef]
  13. A. Costela, I. García-Moreno, and R. Sastre, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic Press, New York, 2001), Vol. 7, Chap. 4.
  14. Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).
  15. G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
    [CrossRef]
  16. Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
    [CrossRef]
  17. T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
    [CrossRef]
  18. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45(16), 3846–3851 (2006).
    [CrossRef] [PubMed]
  19. R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
    [CrossRef]
  20. J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
    [CrossRef]
  21. A. Dubois, M. Canva, A. Brun, F. Chaput, and J. P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35(18), 3193–3199 (1996).
    [CrossRef] [PubMed]
  22. M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
    [CrossRef]
  23. A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
    [CrossRef]
  24. A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
    [CrossRef]
  25. A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
    [CrossRef]
  26. O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
    [CrossRef]
  27. Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
    [CrossRef]
  28. I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977).
    [CrossRef]
  29. M. D. Rahn and T. A. King, “Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34(36), 8260–8271 (1995).
    [CrossRef] [PubMed]
  30. A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
    [CrossRef]
  31. J. J. Reisinger and M. A. Hillmyer, “Synthesis of fluorinated polymers by chemical modification,” Prog. Polym. Sci. 27(5), 971–1005 (2002).
    [CrossRef]
  32. J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
    [CrossRef]

2007 (2)

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

2006 (4)

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
[CrossRef]

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[CrossRef] [PubMed]

N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45(16), 3846–3851 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

2004 (4)

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

2003 (1)

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

2002 (4)

Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

J. J. Reisinger and M. A. Hillmyer, “Synthesis of fluorinated polymers by chemical modification,” Prog. Polym. Sci. 27(5), 971–1005 (2002).
[CrossRef]

2001 (2)

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

2000 (3)

M. Schneider and K. Müllen, “Hybrid materials doped with covalently bound perylene dyes through the sol-gel process,” Chem. Mater. 12(2), 352–362 (2000).
[CrossRef]

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

1990 (1)

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

1989 (1)

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

1984 (1)

Y. Nagao and T. Misono, “Synthesis and properties of N-alkyl-N’-aryl-3,4:9,10-perylene bys(dicarboximide),” Dyes Pigm. 5(3), 171–188 (1984).
[CrossRef]

1982 (1)

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[CrossRef]

1977 (1)

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977).
[CrossRef]

Al-Kaysi, R. O.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[CrossRef] [PubMed]

Álvarez, M.

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

Amat-Guerri, F.

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

Andreoni, W.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Barashkov, N.

Bardeen, C. J.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[CrossRef] [PubMed]

Barroso, J.

A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
[CrossRef]

Boilot, J.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Boilot, J. P.

Boilot, J.-P.

Brum, A.

Brun, A.

Brusilovsky, D.

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

Burshtein, Z.

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

Burstein, Z.

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

Canva, M.

Chaput, F.

Chen, Z. J.

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

Costela, A.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
[CrossRef]

Cotlet, M.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Curioni, A.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Danon, N. N.

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977).
[CrossRef]

de Abajo, J.

J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
[CrossRef]

de la Campa, J. G.

J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
[CrossRef]

De Schryver, F. C.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Debaerdemaeker, T.

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

Debije, M. G.

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

del Agua, D.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

Dimitrakopoulos, C. D.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Dittmer, J. J.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Dubois, A.

Espeso, J.

J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
[CrossRef]

Eyal, M.

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

Faloss, M.

Fan, X.

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

Friend, R. H.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Fujiwara, H.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

García, O.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

García-Moreno, I.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
[CrossRef]

Gelorme, J. D.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Georges, P.

Gómez, C.

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

Goudket, H.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Graham, T. O.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Gronheid, R.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Heath, J.

Herrmann, A.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Hillmyer, M. A.

J. J. Reisinger and M. A. Hillmyer, “Synthesis of fluorinated polymers by chemical modification,” Prog. Polym. Sci. 27(5), 971–1005 (2002).
[CrossRef]

Hofkens, J.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Holmes, A. B.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Hung, N. D.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Ivri, J.

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

King, T. A.

Köhn, F.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Kosbar, L. L.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Langhals, H.

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[CrossRef]

Liras, M.

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

Lozano, A. E.

J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
[CrossRef]

Lux, A.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Malenfant, P. R. L.

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Manh, D. D.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Märkle, S.

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[CrossRef]

Marseglia, E. A.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Miron, E.

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

Misono, T.

Y. Nagao and T. Misono, “Synthesis and properties of N-alkyl-N’-aryl-3,4:9,10-perylene bys(dicarboximide),” Dyes Pigm. 5(3), 171–188 (1984).
[CrossRef]

Moratti, S. C.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Mukamel, S.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Müllen, K.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

M. Schneider and K. Müllen, “Hybrid materials doped with covalently bound perylene dyes through the sol-gel process,” Chem. Mater. 12(2), 352–362 (2000).
[CrossRef]

Müller, A. M.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[CrossRef] [PubMed]

Nagao, Y.

Y. Nagao and T. Misono, “Synthesis and properties of N-alkyl-N’-aryl-3,4:9,10-perylene bys(dicarboximide),” Dyes Pigm. 5(3), 171–188 (1984).
[CrossRef]

Nhung, T. H.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Oppenheim, U. P.

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977).
[CrossRef]

Osswald, P.

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

Penzkofer, A.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

Perelgritz, J.-F.

Petritsch, K.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Qian, G.

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Qian, G. D.

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Rademacher, A.

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[CrossRef]

Rahn, M. D.

Reisfeld, R.

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

Reisinger, J. J.

J. J. Reisinger and M. A. Hillmyer, “Synthesis of fluorinated polymers by chemical modification,” Prog. Polym. Sci. 27(5), 971–1005 (2002).
[CrossRef]

Reuther, E.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

Roger, G.

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Rong, H.

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Rozenberg, G. G.

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Sang Ahn, T.

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[CrossRef] [PubMed]

Sastre, R.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
[CrossRef]

Schneider, M.

M. Schneider and K. Müllen, “Hybrid materials doped with covalently bound perylene dyes through the sol-gel process,” Chem. Mater. 12(2), 352–362 (2000).
[CrossRef]

Shoshan, I.

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977).
[CrossRef]

Sisk, W. N.

Tanaka, N.

Tyagi, A.

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

Van der Auweraer, M.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Van Der Biest, K.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Vosch, T.

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Wang, M.

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Wang, M. Q.

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Wang, Z.

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Wang, Z. Y.

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Weil, T.

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Würthner, F.

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

Yang, Ch.

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

Yang, Y.

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

Yang, Z.

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

Zou, J.

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Angew. Chem. (1)

T. Vosch, J. Hofkens, M. Cotlet, F. Köhn, H. Fujiwara, R. Gronheid, K. Van Der Biest, T. Weil, A. Herrmann, K. Müllen, S. Mukamel, M. Van der Auweraer, and F. C. De Schryver, “Influence of structural and rotational isomerism on the triplet blinking of individual dendrimer molecules,” Angew. Chem. 40(24), 4643–4648 (2001).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (3)

M. Álvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gómez, M. Liras, and R. Sastre, “Linear and cross-linked polymeric solid-state dye lasers based on 8-substituted alkyl analogues of pyrromethene 567,” Appl. Phys. B 80(8), 993–1006 (2005).
[CrossRef]

A. Costela, I. García-Moreno, J. Barroso, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid matrices of methyl methacrylate with different comonomers,” Appl. Phys. B 70, 367–373 (2000).
[CrossRef]

Y. Yang, J. Zou, H. Rong, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs,” Appl. Phys. B 86(2), 309–313 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
[CrossRef]

P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, “N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative,” Appl. Phys. Lett. 80(14), 2517–2519 (2002).
[CrossRef]

Chem. Ber. (1)

A. Rademacher, S. Märkle, and H. Langhals, “Soluble perylene fluorescent dyes with high photostability,” Chem. Ber. 115(8), 2927–2934 (1982).
[CrossRef]

Chem. Mater. (2)

M. Schneider and K. Müllen, “Hybrid materials doped with covalently bound perylene dyes through the sol-gel process,” Chem. Mater. 12(2), 352–362 (2000).
[CrossRef]

O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
[CrossRef]

Chem. Phys. (1)

A. Tyagi, D. del Agua, A. Penzkofer, O. García, R. Sastre, A. Costela, and I. García-Moreno, “Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon containing organic copolymers,” Chem. Phys. 342, 201–214 (2007).
[CrossRef]

Chem. Phys. Lett. (2)

R. Reisfeld, D. Brusilovsky, M. Eyal, E. Miron, Z. Burstein, and J. Ivri, “A new solid-state tunable laser in the visible,” Chem. Phys. Lett. 160(1), 43–44 (1989).
[CrossRef]

G. Qian, Y. Yang, Z. Wang, Ch. Yang, Z. Yang, and M. Wang, “Pathways for folding and re-unfolding transitions in denatured conformations of anhydrous proteins,” Chem. Phys. Lett. 368, 555–562 (2003).
[CrossRef]

ChemPhysChem (1)

Z. J. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, and F. Würthner, “Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: studies on structural, electrochemical and charge transport properties,” ChemPhysChem 5(1), 137–140 (2004).
[CrossRef] [PubMed]

Dyes Pigm. (1)

Y. Nagao and T. Misono, “Synthesis and properties of N-alkyl-N’-aryl-3,4:9,10-perylene bys(dicarboximide),” Dyes Pigm. 5(3), 171–188 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Ivri, Z. Burshtein, E. Miron, R. Reisfeld, and M. Eyal, “The perylene derivative BASF-241 solution as a new tunable dye laser in the visible,” IEEE J. Quantum Electron. 26(9), 1516–1520 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

R. Gronheid, J. Hofkens, F. Köhn, T. Weil, E. Reuther, K. Müllen, and F. C. De Schryver, “Intramolecular Förster energy transfer in a dendritic system at the single molecule level,” J. Am. Chem. Soc. 124(11), 2418–2419 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

I. Shoshan, N. N. Danon, and U. P. Oppenheim, “Narrowband operation of a pulsed dye laser without intracavity beam expansion,” J. Appl. Phys. 48(11), 4495–4497 (1977).
[CrossRef]

A. Costela, I. García-Moreno, C. Gómez, O. García, and R. Sastre, “Laser performance of pyrromethene 567 dye in solid polymeric matrices with different cross-linking degrees,” J. Appl. Phys. 90(7), 3159 (2001).
[CrossRef]

J. Membr. Sci. (1)

J. Espeso, A. E. Lozano, J. G. de la Campa, and J. de Abajo, “Effect of substituents on the permeation properties of polyamide membranes,” J. Membr. Sci. 280(1-2), 659–665 (2006).
[CrossRef]

Opt. Commun. (2)

Y. Yang, G. Qian, Z. Wang, and M. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).

T. H. Nhung, M. Canva, F. Chaput, H. Goudket, G. Roger, A. Brun, D. D. Manh, N. D. Hung, and J. Boilot, “Dye energy transfer in xerogel matrices and application to solid-state dye lasers,” Opt. Commun. 232(1-6), 343–351 (2004).
[CrossRef]

Opt. Mater. (1)

Y. Yang, M. Wang, G. Qian, Z. Wang, and X. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

R. O. Al-Kaysi, T. Sang Ahn, A. M. Müller, and C. J. Bardeen, “The photophysical properties of chromophores at high (100 mM and above) concentrations in polymers and as neat solids,” Phys. Chem. Chem. Phys. 8(29), 3453–3459 (2006).
[CrossRef] [PubMed]

Prog. Polym. Sci. (1)

J. J. Reisinger and M. A. Hillmyer, “Synthesis of fluorinated polymers by chemical modification,” Prog. Polym. Sci. 27(5), 971–1005 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

K. Petritsch, J. J. Dittmer, E. A. Marseglia, R. H. Friend, A. Lux, G. G. Rozenberg, S. C. Moratti, and A. B. Holmes, “Dye-based donor/acceptor solar cells,” Sol. Energy Mater. Sol. Cells 61(1), 63–72 (2000).
[CrossRef]

Other (2)

R. P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, (Molecular Probes Inc., Eugene, 1989).

A. Costela, I. García-Moreno, and R. Sastre, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic Press, New York, 2001), Vol. 7, Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Molecular structures of Perylene-Red (Per-Red) dye as well as the monomers selected in this work: methyl methacrylate (MMA), 3-(trimethoxysilyl)propyl methacrylate (TMSPMA), 2,2,2-trifluoroethyl-methacrylate (TFMA), ethylene glycol dimethacrylate (EGDMA), pentaerythritol triacrylate (PETA), and pentaerythritol tetraacrylate (PETRA).

Fig. 2
Fig. 2

Normalized laser-induced fluorescence emission as a function of the number of pump pulses at 10 Hz repetition rate for (a) pure and (b) impure Perylene-Red dye in ethyl acetate solutions.

Fig. 3
Fig. 3

Normalized laser output as a function of the number of pump pulses for Perylene-Red dye dissolved in (a) COP(MMA/TFMA 7/3), (b) silicon-containing copolymer COP(MMA/TMSPMA 9/1) and (c) crosslinked copolymer COP(MMA/PETRA 7/3). Dye concentration: 5x10−4 M. Pump energy and repetition rate: 5.5 mJ/pulse and 10 Hz, respectively.

Tables (1)

Tables Icon

Table 1 Laser parameters a for Perylene-Red dye in linear, crosslinked, fluorinated and silicon-containing organic matrices. Nd:YAG laser (second harmonic) pump energy and repetition rate: 5.5 mJ/pulse and 10 Hz, respectively. Dye concentration: 5x10−4 M.

Metrics