Abstract

A cascaded system of two acousto-optical cells is proposed for equalization of multichannel optical signal satisfying coarse wavelength-division multiplexing standard. Two similar acousto-optical modulators for unpolarized light on the basis of 10°-cut paratellurite crystals were used in a free-space gap of a fiber line. The system controlled intensity of several optical carriers in the spectral range from 1200 to 1700 nm. The device was tested in a four-channel regime of operation in the range 1510–1570 nm. Overall optical insertion losses did not exceed -2 dB and less than 1 W electric power per channel was necessary for -20 dB intensity attenuation of the signal in a continuous operation mode. Compensation for birefringence in paratellurite provided diffraction regime that was insensitive to polarization of light. Interchannel crosstalk was less than -10 dB.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (Wiley, New York, 2002).
    [CrossRef]
  2. A. Goutzoulis and D. Pape, Design and fabrication of acousto-optic devices (Marcel Dekker, New York, 1994).
  3. J. Xu and R. Stroud, Acousto-optic devices (Wiley, New York, 1992).
  4. ITU-T Recommendation G.694.2 (2003). Spectral grids for WDM applications: CWDM wavelength grid, http://www.itu.int/rec/T-REC-G.694.2-200312-I/en.
  5. V.Ya. Molchanov, V. B. Voloshinov, and O.Yu. Makarov, "Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels," Quantum Electron. 39, 353-360 (2009).
    [CrossRef]
  6. S. N. Antonov, "Acoustooptic nonpolar light controlling devices and polarization modulators based on paratellurite crystals," Tech. Phys. 49, 1329-1334 (2004).
    [CrossRef]
  7. V. B. Voloshinov and V.Ya. Molchanov, "Acousto-optical modulation of radiation with arbitrary polarization direction," Opt. and Laser Tech. 27, 307-313 (1995).
    [CrossRef]
  8. V. B. Voloshinov, K. B. Yushkov, and B. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A: Pure and Appl. Opt. 9, 341-347 (2007).
    [CrossRef]
  9. J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
    [CrossRef]
  10. V. B. Voloshinov and N.V. Polikarpova, "Application of acousto-optic interactions in anisotropic media for control of light radiation," Acustica - Acta Acustica 89, 930-935 (2003).
  11. J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
    [CrossRef]
  12. J. C. Kastelik, M. G. Gazalet, and P. Boudy, "Cascaded TeO2 acousto-optic devices for high efficiency multifrequency modulation," J. Appl. Phys. 83, 674-678 (1998).
    [CrossRef]

2009 (1)

V.Ya. Molchanov, V. B. Voloshinov, and O.Yu. Makarov, "Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels," Quantum Electron. 39, 353-360 (2009).
[CrossRef]

2007 (1)

V. B. Voloshinov, K. B. Yushkov, and B. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A: Pure and Appl. Opt. 9, 341-347 (2007).
[CrossRef]

2004 (1)

S. N. Antonov, "Acoustooptic nonpolar light controlling devices and polarization modulators based on paratellurite crystals," Tech. Phys. 49, 1329-1334 (2004).
[CrossRef]

2003 (1)

V. B. Voloshinov and N.V. Polikarpova, "Application of acousto-optic interactions in anisotropic media for control of light radiation," Acustica - Acta Acustica 89, 930-935 (2003).

2002 (1)

J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

1998 (1)

J. C. Kastelik, M. G. Gazalet, and P. Boudy, "Cascaded TeO2 acousto-optic devices for high efficiency multifrequency modulation," J. Appl. Phys. 83, 674-678 (1998).
[CrossRef]

1995 (1)

V. B. Voloshinov and V.Ya. Molchanov, "Acousto-optical modulation of radiation with arbitrary polarization direction," Opt. and Laser Tech. 27, 307-313 (1995).
[CrossRef]

1993 (1)

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Antonov, S. N.

S. N. Antonov, "Acoustooptic nonpolar light controlling devices and polarization modulators based on paratellurite crystals," Tech. Phys. 49, 1329-1334 (2004).
[CrossRef]

Boudy, P.

J. C. Kastelik, M. G. Gazalet, and P. Boudy, "Cascaded TeO2 acousto-optic devices for high efficiency multifrequency modulation," J. Appl. Phys. 83, 674-678 (1998).
[CrossRef]

Bridoux, E.

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Bruneel, C.

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Charissoux, D.

J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

Gazalet, M. G.

J. C. Kastelik, M. G. Gazalet, and P. Boudy, "Cascaded TeO2 acousto-optic devices for high efficiency multifrequency modulation," J. Appl. Phys. 83, 674-678 (1998).
[CrossRef]

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Kastelik, J. C.

J. C. Kastelik, M. G. Gazalet, and P. Boudy, "Cascaded TeO2 acousto-optic devices for high efficiency multifrequency modulation," J. Appl. Phys. 83, 674-678 (1998).
[CrossRef]

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

Linde, B.

V. B. Voloshinov, K. B. Yushkov, and B. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A: Pure and Appl. Opt. 9, 341-347 (2007).
[CrossRef]

Makarov, O.Yu.

V.Ya. Molchanov, V. B. Voloshinov, and O.Yu. Makarov, "Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels," Quantum Electron. 39, 353-360 (2009).
[CrossRef]

Molchanov, V.Ya.

V.Ya. Molchanov, V. B. Voloshinov, and O.Yu. Makarov, "Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels," Quantum Electron. 39, 353-360 (2009).
[CrossRef]

J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

V. B. Voloshinov and V.Ya. Molchanov, "Acousto-optical modulation of radiation with arbitrary polarization direction," Opt. and Laser Tech. 27, 307-313 (1995).
[CrossRef]

Polikarpova, N.V.

V. B. Voloshinov and N.V. Polikarpova, "Application of acousto-optic interactions in anisotropic media for control of light radiation," Acustica - Acta Acustica 89, 930-935 (2003).

Sapriel, J.

J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

Voloshinov, V. B.

V.Ya. Molchanov, V. B. Voloshinov, and O.Yu. Makarov, "Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels," Quantum Electron. 39, 353-360 (2009).
[CrossRef]

V. B. Voloshinov, K. B. Yushkov, and B. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A: Pure and Appl. Opt. 9, 341-347 (2007).
[CrossRef]

V. B. Voloshinov and N.V. Polikarpova, "Application of acousto-optic interactions in anisotropic media for control of light radiation," Acustica - Acta Acustica 89, 930-935 (2003).

J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

V. B. Voloshinov and V.Ya. Molchanov, "Acousto-optical modulation of radiation with arbitrary polarization direction," Opt. and Laser Tech. 27, 307-313 (1995).
[CrossRef]

Yushkov, K. B.

V. B. Voloshinov, K. B. Yushkov, and B. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A: Pure and Appl. Opt. 9, 341-347 (2007).
[CrossRef]

Acustica - Acta Acustica (1)

V. B. Voloshinov and N.V. Polikarpova, "Application of acousto-optic interactions in anisotropic media for control of light radiation," Acustica - Acta Acustica 89, 930-935 (2003).

J. Appl. Phys. (2)

J. C. Kastelik, M. G. Gazalet, C. Bruneel, and E. Bridoux, "Acoustic shear wave propagation in Paratellurite with reduced spreading," J. Appl. Phys. 74, 2813-2817 (1993).
[CrossRef]

J. C. Kastelik, M. G. Gazalet, and P. Boudy, "Cascaded TeO2 acousto-optic devices for high efficiency multifrequency modulation," J. Appl. Phys. 83, 674-678 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Sapriel, D. Charissoux, V. B. Voloshinov, and V.Ya. Molchanov, "Tunable acousto-optic filters and equalizers for WDM applications," J. Lightwave Technol. 20, 892-899 (2002).
[CrossRef]

J. Opt. A: Pure and Appl. Opt. (1)

V. B. Voloshinov, K. B. Yushkov, and B. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A: Pure and Appl. Opt. 9, 341-347 (2007).
[CrossRef]

Opt. and Laser Tech. (1)

V. B. Voloshinov and V.Ya. Molchanov, "Acousto-optical modulation of radiation with arbitrary polarization direction," Opt. and Laser Tech. 27, 307-313 (1995).
[CrossRef]

Quantum Electron. (1)

V.Ya. Molchanov, V. B. Voloshinov, and O.Yu. Makarov, "Quasi-collinear tunable acousto-optic filters for systems of wavelength division multiplexing and selection of optical channels," Quantum Electron. 39, 353-360 (2009).
[CrossRef]

Tech. Phys. (1)

S. N. Antonov, "Acoustooptic nonpolar light controlling devices and polarization modulators based on paratellurite crystals," Tech. Phys. 49, 1329-1334 (2004).
[CrossRef]

Other (4)

G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (Wiley, New York, 2002).
[CrossRef]

A. Goutzoulis and D. Pape, Design and fabrication of acousto-optic devices (Marcel Dekker, New York, 1994).

J. Xu and R. Stroud, Acousto-optic devices (Wiley, New York, 1992).

ITU-T Recommendation G.694.2 (2003). Spectral grids for WDM applications: CWDM wavelength grid, http://www.itu.int/rec/T-REC-G.694.2-200312-I/en.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Wave vector diagram of simultaneous up- and down-shifted AO diffraction

Fig. 2.
Fig. 2.

Principal scheme of cascaded modulator of unpolarized light. Polarization state of the beams is depicted with circles (ordinary) and arrows (extraordinary)

Fig. 3.
Fig. 3.

Filtering module of the experimental setup. 1 — fiber output and input lenses, 2 — additional mirror for visible light, 3 — iris diaphragms, 4a — AO cell no. 1, 4b — AO cell no. 2

Fig. 4.
Fig. 4.

Diffraction efficiency in both cells (solid curves for AO cell no. 1 and dashed curves for AO cell no. 2) at four independent channels: 1 — f 1=45.4 MHz, 2 — f 2=44.8 MHz, 3 — f 3=44.2 MHz, and 4 — f 4=43.6 MHz

Fig. 5.
Fig. 5.

Interchannel crosstalks

Tables (1)

Tables Icon

Table 1. Performance of the filters for basic CWDM carriers [4]. Experimentally tested channels are marked with bold

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ki(e)+K=kd(o),
ki(o)K=kd(e).
necosθ(e)=nocosθ(o),
f=Vλ(nesinθ(e)nosinθ(o)),
{θi(o)(θd(e))=θi(e);f(θd(e))=f(θi(e)).
Δ λ0.8λVfl(cotθd+tanψ),
P0=λ2cos2(ψθi)2M2cos2ψ·b1,
T=A2A2+H2sin2(π2A2+H2).
T (A)H=0=sin2πA2.
T (H)A=1=π24sinc2(121+H2).

Metrics