Abstract

Surface enhanced Raman scattering (SERS) from Rhodamine 6G homogenously adsorbed on both periodic arrays of and individual gold nanoparticles is investigated using high-resolution Raman imaging with polarized excitation. Rectangular 50-nm-high nanoparticles of different sizes chosen to ensure the presence of localized surface plasmon resonances close to the 532-nm excitation wavelength are fabricated with electron-beam lithography on the surface of a smooth gold film and arranged both individually (i.e., placed sufficiently far apart) and in 740-nm-period arrays. Linear reflection spectra and high-resolution Raman images obtained from arrays of nanoparticles are compared revealing good correspondence in the spectral dependences of reflection and local SERS enhancements (measured at the top of nanoparticles). The latter are related to those observed with individual nanoparticles. The results obtained emphasize the importance and quantify the influence of particle dimensions, polarized excitation, collective resonances and SERS locations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
    [CrossRef]
  2. Y. Liu, C. Yu, and S. Sheu, "Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," J. Mater. Chem. 16, 3546-3551 (2006).
    [CrossRef]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
    [CrossRef]
  4. V. M. Markel and T. F. George, Optics of Nanostructured Materials (Wiley, 2001).
  5. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
    [CrossRef]
  6. E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
    [CrossRef]
  7. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
    [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  9. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  10. A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
    [CrossRef]
  11. A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites," Phys. Rep. 335, 275-371 (2000); M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 4, p. 313, and references therein.
    [CrossRef]
  12. S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
    [CrossRef] [PubMed]
  13. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
    [CrossRef] [PubMed]
  14. A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
    [CrossRef]
  15. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, "Localized field enhancements in fractal shaped periodic metal nanostructures," Opt. Express 15, 15234-15241 (2007).
    [CrossRef] [PubMed]
  16. J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
    [CrossRef]
  17. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
    [CrossRef]
  18. E. C. Le Ru, and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63-66 (2006).
    [CrossRef]
  19. J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
    [CrossRef] [PubMed]
  20. T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
    [CrossRef]
  21. A. Otto, "Surface-enhanced Raman scattering of adsorbates," J. Raman Spectrosc. 22, 743-752 (1991).
    [CrossRef]
  22. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
    [CrossRef]
  23. H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
    [CrossRef]

2009 (1)

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
[CrossRef]

2008 (4)

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
[CrossRef]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
[CrossRef]

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, "Localized field enhancements in fractal shaped periodic metal nanostructures," Opt. Express 15, 15234-15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

2006 (3)

E. C. Le Ru, and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63-66 (2006).
[CrossRef]

Y. Liu, C. Yu, and S. Sheu, "Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," J. Mater. Chem. 16, 3546-3551 (2006).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

2005 (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

2004 (1)

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

2003 (1)

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

2000 (1)

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites," Phys. Rep. 335, 275-371 (2000); M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 4, p. 313, and references therein.
[CrossRef]

1999 (1)

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

1991 (1)

A. Otto, "Surface-enhanced Raman scattering of adsorbates," J. Raman Spectrosc. 22, 743-752 (1991).
[CrossRef]

1984 (1)

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Aubard, J.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

Beermann, J.

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
[CrossRef] [PubMed]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
[CrossRef]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, "Localized field enhancements in fractal shaped periodic metal nanostructures," Opt. Express 15, 15234-15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Blackie, E.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

Boltasseva, A.

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, "Localized field enhancements in fractal shaped periodic metal nanostructures," Opt. Express 15, 15234-15241 (2007).
[CrossRef] [PubMed]

Boltasseva, A. E.

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
[CrossRef] [PubMed]

Boyd, G. T.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Bozhevolnyi, S. I.

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
[CrossRef] [PubMed]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
[CrossRef]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, "Localized field enhancements in fractal shaped periodic metal nanostructures," Opt. Express 15, 15234-15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Coello, V.

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

E. C. Le Ru, and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63-66 (2006).
[CrossRef]

Evlyukhin, A.

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Félidj, N.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Grand, J.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Hohenau, A.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Jensen, L.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

Johnasson, P.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Käll, M.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Kinkhabwala, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Krenn, J. R.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

E. C. Le Ru, and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63-66 (2006).
[CrossRef]

Leite, J. R. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Leosson, K.

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
[CrossRef]

Lévi, G.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

Liu, Y.

Y. Liu, C. Yu, and S. Sheu, "Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," J. Mater. Chem. 16, 3546-3551 (2006).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Novikov, S. M.

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
[CrossRef] [PubMed]

Novotny, L.

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

Otto, A.

A. Otto, "Surface-enhanced Raman scattering of adsorbates," J. Raman Spectrosc. 22, 743-752 (1991).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Persson, M. P.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Radko, I. P.

Rasing, Th.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

Sarychev, A. K.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites," Phys. Rep. 335, 275-371 (2000); M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 4, p. 313, and references therein.
[CrossRef]

Schatz, G. C.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites," Phys. Rep. 335, 275-371 (2000); M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 4, p. 313, and references therein.
[CrossRef]

Shen, Y. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Sheu, S.

Y. Liu, C. Yu, and S. Sheu, "Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," J. Mater. Chem. 16, 3546-3551 (2006).
[CrossRef]

Søndergaard, T.

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva and S. I. Bozhevolnyi, "Two-photon mapping of localized field enhancements in thin nanostrip antennas," Opt. Express 16, 17302-17309 (2008).
[CrossRef] [PubMed]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
[CrossRef]

Stockman, M. I.

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites," Phys. Rep. 335, 275-371 (2000); M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 4, p. 313, and references therein.
[CrossRef]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Sung, J.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

Wang, X.-H.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

Xu, H.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Xu, H. Q.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Yu, C.

Y. Liu, C. Yu, and S. Sheu, "Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," J. Mater. Chem. 16, 3546-3551 (2006).
[CrossRef]

Zhao, J.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

Zou, S.

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

E. C. Le Ru, and P. G. Etchegoin, "Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy," Chem. Phys. Lett. 423, 63-66 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

J. Zhao, L. Jensen, J. Sung, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles," J. Am. Chem. Soc. 129, 7647 (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, "Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas," J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

J. Mater. Chem. (1)

Y. Liu, C. Yu, and S. Sheu, "Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates," J. Mater. Chem. 16, 3546-3551 (2006).
[CrossRef]

J. Opt. A: Pure and Appl. Opt. (1)

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, "Surface enhanced Raman microscopy with metal nanoparticle arrays," J. Opt. A: Pure and Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, "Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film," J. Opt. A: Pure Appl. Opt. 9, S366-371 (2007).
[CrossRef]

J. Opt. Soc. Am. B. (1)

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi. "Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures," J. Opt. Soc. Am. B.  25, 1585 - 1592 (2008).
[CrossRef]

J. Phys. Chem. C (1)

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, "Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects," J. Phys. Chem. C 112, 8117-8121 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

A. Otto, "Surface-enhanced Raman scattering of adsorbates," J. Raman Spectrosc. 22, 743-752 (1991).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

A. K. Sarychev and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites," Phys. Rep. 335, 275-371 (2000); M. I. Stockman, "Local fields’ localization and chaos and nonlinear-optical enhancement in clusters and composites," in Optics of Nanostructured Materials, Ref. 4, p. 313, and references therein.
[CrossRef]

Phys. Rev. B (3)

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, "Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration," Phys. Rev. B 77, 115420 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, S. G. Rodrigo, L. Martin-Moreno, F. Garcia-Vidal, J. Beermann, and S. I. Bozhevolnyi, "Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films," Phys. Rev. B 75, 085104 (2007).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, "Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation," Phys. Rev. B 30, 519-526 (1984), and references therein.
[CrossRef]

Phys. Rev. Lett. (5)

E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Phys. Rev. Lett. 82, 4014-4017 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johnasson, "Unified treatment of fluorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, "Direct observation of localized second-harmonic enhancement in random metal nanostructures," Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Other (1)

V. M. Markel and T. F. George, Optics of Nanostructured Materials (Wiley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM images of arrays with 50-nm-high nanoparticles having lateral dimensions (a) 250×250 nm, (b) 250×440 nm, and (c) 250×630 nm at a fixed array period (Λxy≈740 nm) on top of a 200-nm-thick gold film.

Fig. 2.
Fig. 2.

(a)–(b) Reflection spectra from the periodic array of square gold nanoparticles on top of a 200-nm-thick gold substrate for the indicated nanoparticle dimensions along with (c)–(d) Raman spectra obtained from the nanoparticles and a reference spectra obtained at the smooth gold film outside the array for (a),(c) x- and (b),(d) y-polarized excitation. The shaded columns in (c)–(d) indicate the spectral range used for Raman imaging in Fig. 3, and the vertical lines in (a)–(b) mark the wavelength range 530 nm–583 nm (shifts from 600 to 1650 cm-1) visible for the calculated Raman enhancement in Fig. 6.

Fig. 3.
Fig. 3.

Polarized Raman images (3×3 µm2) obtained by mapping the Raman intensity of peaks integrated over 1468–1614 cm-1 from R6G adsorbed on the 740-nm-periodic array of gold nanoparticles having lateral dimensions (a), (d) 250×250 nm, (b), (e) 250×440 nm, and (c), (f) 250×630 nm and with the excitation polarization indicated by a white arrow.

Fig. 4.
Fig. 4.

Raman images (1.6×2 µm2) obtained by mapping the Raman intensity integrated over 1468–1614 cm-1 from R6G adsorbed on individual gold nanoparticles having lateral dimensions (a), (d) 250 nm×250 nm, (b), (e) 250 nm×440 nm and (c), (f) 250 nm×630 nm and with the excitation polarization indicated by a white arrow.

Fig. 5.
Fig. 5.

Raman spectra obtained from individual nanoparticles at positions having the brightest SERS intensity and reference spectra obtained at the smooth gold film for (a) x- and (b) y-polarized excitation. The shaded columns indicate the range used for Raman imaging in Fig. 4.

Fig. 6.
Fig. 6.

The relative Raman enhancement from the nanoparticles arranged either in the periodic array (a)–(b) or as individual particles (c)–(d) and estimated by comparing levels at each Raman peak with levels obtained in the reference spectra. The excitation polarization in (a), (c) and (b), (d) were selected along x and y, respectively. For each curve the uncertainty marks are based upon 3–4 measurements from different places with the same configuration.

Metrics