Abstract

We report improved optomechanical properties of a nano-mechanical beam resonator embedded in an optical race-track resonator. Precise control of the mechanical resonator is achieved by clamping the beam between two low-loss photonic crystal waveguide couplers. The low insertion loss and the rigid mechanical support provided by the couplers yield both good mechanical and optical Q-factors for improved signal quality.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [CrossRef] [PubMed]
  2. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [CrossRef]
  3. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  4. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  5. R. Soref, ” Recent Advances in Silicon Photonic Components,” in Integrated Photonics Research and Applications/Nanophotonics for Information Systems, Technical Digest (Optical Society of America, 2005), paper JWA1.
  6. M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  8. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [CrossRef] [PubMed]
  9. S. P. Timoshenko, “Theory of Elasticity,” McGraw-Hill Book Company, 1st Ed. (1934).
  10. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
    [CrossRef]
  11. B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
    [CrossRef]
  12. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  13. O. Schwelb, “Transmission, Group Delay, and Dispersion in Single-Ring Optical Resonators and Add/Drop Filters - A Tutorial Overview,” J. Lightwave Technol. 22(5), 1380–1394 (2004).
    [CrossRef]
  14. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
    [CrossRef]
  15. D. Gerace and L. Andreani, “Low-loss guided modes in photonic crystal waveguides,” Opt. Express 13(13), 4939–4951 (2005).
    [CrossRef] [PubMed]
  16. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14(6), 2440–2445 (2006).
    [CrossRef] [PubMed]
  17. F. Van Laere, W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, and R. Baets, Compact Focusing Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWG1.
  18. W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14(6), 2440–2445 (2006).
[CrossRef] [PubMed]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

2005 (3)

2004 (2)

2002 (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

2000 (1)

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Andreani, L.

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Baets, R.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Beckx, S.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Bienstman, P.

Bogaerts, W.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Chu, S. T.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Dumon, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Fathpour, S.

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Gerace, D.

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Haus, H. A.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Jaenen, P.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jalali, B.

Kimerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Kokubun, Y.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

Krauss, T. F.

Li, M.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Lipson, M.

M. Lipson, “Guiding, modulating, and emitting light on silicon—challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Luyssaert, B.

Michaeli, A.

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

Pan, W.

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

Pernice, W. H. P.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rooks, M.

Salib, M.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schwelb, O.

Sekaric, L.

Settle, M.

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

Tang, H. X.

W. H. P. Pernice, M. Li, and H. X. Tang, “Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Opt. Express 17(3), 1806–1816 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[CrossRef] [PubMed]

Vlasov, Y.

Wiaux, V.

Wouters, J.

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Xia, F.

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO/sub2/ microring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett. 10(4), 549–551 (1998).
[CrossRef]

B. E. Little, S. T. Chu, W. Pan, and Y. Kokubun, “Microring resonator arrays for VLSI photonics,” IEEE Photon. Technol. Lett. 12(3), 323–325 (2000).
[CrossRef]

J. Lightwave Technol. (3)

J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, and R. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Opt. Express (5)

Other (3)

S. P. Timoshenko, “Theory of Elasticity,” McGraw-Hill Book Company, 1st Ed. (1934).

R. Soref, ” Recent Advances in Silicon Photonic Components,” in Integrated Photonics Research and Applications/Nanophotonics for Information Systems, Technical Digest (Optical Society of America, 2005), paper JWA1.

F. Van Laere, W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, and R. Baets, Compact Focusing Grating Couplers Between Optical Fibers and Silicon-on-Insulator Photonic Wire Waveguides,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OWG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The outline of the design to achieve opto-mechanical coupling. We employ a race-track optical resonator to achieve high optical Q. A nanomechanical beam is realized by removing the underlying oxide under parts of the race-track. For good mechanical clamping and precise definition of the beam length the resonator is supported by two photonic crystal couplers. (b) The layout of the photonic crystal waveguide coupler. Two Wx photonic crystal waveguides are fabricated in series. The width D of the waveguide is adjusted to yield maximum transmission at the output of the coupler. Note that D is assumed to be larger than the width of the input waveguide w in order to provide rigid mechanical support and good clamping properties.

Fig. 2
Fig. 2

(a) The transmission of the photonic crystal coupler in dependence of coupler width. Optimal transmission is found for a coupler width of 1150nm. The resulting transmission loss through a pair of couplers is less than −0.25dB. (b) The dependence of the transmission on the length of the PhC couplers. Only a small decrease in transmission is observed over the investigated coupler lengths. c) The optical mode profile in the optimized coupler structure under illumination with CW light of wavelength 1550nm.

Fig. 3
Fig. 3

(a) The transmission profile of a race-track resonator with a radius of 7.5μm. The coupling gap between the resonator and the input waveguide is 200nm. The free spectral range of the resonator is 5.6nm. (b) The spectrum of the resonator inside the ring. The resonance at 1550nm is fitted with a Lorentzian and has a quality factor of ~3300.

Fig. 4
Fig. 4

(a) An optical micrograph of the photonic circuit used to measure both the optical and the mechanical quality factors. The image shows the circuit prior to the wet-chemical release step. (b) An SEM image of the released part of the photonic circuit. A nano-mechanical beam resonator is realized by removing the underlying silicon dioxide layer.

Fig. 5
Fig. 5

(a) The normalized transmission spectrum of the race-track resonator. Resonances are observed over the coupling bandwidth of the input grating coupler with a FSR of 3.26nm. (b) A close-up of the resonance with best extinction ratio. Fitting the dip with a Lorentzian allows us to extract the optical quality factor which is 4200 in this case.

Fig. 6
Fig. 6

The mechanical response of the nano-resonator. The mechanical properties of the beam resonator are investigated by measuring the thermo-mechanical noise under vacuum. Shown are the measured signal (blue) and the fitted Lorentzian amplitude (dashed red line). The measured quality factor at a central frequency of 4.866 MHz is 1200.

Metrics