Abstract

BaMgF4 is a ferroelectric fluoride which shows a very wide transparency range extending from 125 nm to 13 µm. The conjunction of these properties confers to BaMgF4 a unique chance for optical applications in the UV and mid-IR wavelength regions, where other nonlinear materials cannot be used. In particular its application as frequency converter in all solid-state lasers is considered. The wavelength dispersion of the refractive indices along the three optical principal axes is measured in the transparent region, and the Sellmeier coefficients for the three refractive indices are determined. The conditions for nonlinear optical processes are calculated for birefringent-matching and quasi phase-matching, with special emphasis in the UV and IR wavelength regions. Quasi phase-matching can be achieved in the whole transparent wavelength region, in contrast to birefringent-matching, which can be obtained in a limited range 573-5634 nm. First demonstration of second harmonic generation by quasi phase-matching with a ferroelectric fluoride is shown by frequency-doubling the emissions of a 1064 nm Nd:YAG laser and a tunable Ti:sapphire laser. The shortest emission is obtained in the UV at 368 nm, indicating the potential of BaMgF4 as nonlinear medium for the fabrication of all solid-state lasers in the vacuum-UV/UV and mid-IR wavelength regions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  3. K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
    [CrossRef]
  4. K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
    [CrossRef]
  5. M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
    [CrossRef]
  6. K. Recker, F. Wallrafen, and S. Hauss¨uhl, "Single crystal growth and optical, elastic, and piezoelectric properties of polar magnesium barium fluoride," J. Cryst. Growth 26, 97-100 (1974).
    [CrossRef]
  7. Q1. F. S. Bechthold and S. Haussühl, "Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride," Appl. Phys. A 14, 403-410 (1977).
  8. S. C. Buchter, T. Y. Fan, V. Liberman, J. J. Zayhowski, M. Rothschild, E. J. Mason, A. Cassanho, H. P. Jenssen, and J. H. Burnett, "Periodically poled BaMgF4 for ultraviolet frequency generation," Opt. Lett. 26, 1693-1695 (2001).
    [CrossRef]
  9. Q2. M. Rolin and M. Clausier, "Le systeme fluorure de calcium fluorure de baryum - fluroure de magnesium," Rev. Int. Hautes Temp. Refract. 4, 39-42 (1967).
  10. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).
  11. M. V. Hobden, "Phase-matched second-harmonic generation in biaxial crystals," J. Appl. Phys. 38, 4365-4372 (1967).
    [CrossRef]
  12. J. G. Berman, G. R. Crane, and H. Guggenheim, "Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4," J. Appl. Phys. 46, 4645-4646 (1975).
    [CrossRef]
  13. M. Kaschke and C. Koch, "Calculation of nonlinear optical polarization and phase matching in biaxial crystals," Appl. Phys. B 49, 419-423 (1989).
    [CrossRef]

2006 (1)

K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
[CrossRef]

2005 (1)

K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
[CrossRef]

2001 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1989 (1)

M. Kaschke and C. Koch, "Calculation of nonlinear optical polarization and phase matching in biaxial crystals," Appl. Phys. B 49, 419-423 (1989).
[CrossRef]

1977 (1)

Q1. F. S. Bechthold and S. Haussühl, "Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride," Appl. Phys. A 14, 403-410 (1977).

1975 (1)

J. G. Berman, G. R. Crane, and H. Guggenheim, "Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4," J. Appl. Phys. 46, 4645-4646 (1975).
[CrossRef]

1974 (1)

K. Recker, F. Wallrafen, and S. Hauss¨uhl, "Single crystal growth and optical, elastic, and piezoelectric properties of polar magnesium barium fluoride," J. Cryst. Growth 26, 97-100 (1974).
[CrossRef]

1969 (1)

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

1967 (2)

Q2. M. Rolin and M. Clausier, "Le systeme fluorure de calcium fluorure de baryum - fluroure de magnesium," Rev. Int. Hautes Temp. Refract. 4, 39-42 (1967).

M. V. Hobden, "Phase-matched second-harmonic generation in biaxial crystals," J. Appl. Phys. 38, 4365-4372 (1967).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Bechthold, F. S.

Q1. F. S. Bechthold and S. Haussühl, "Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride," Appl. Phys. A 14, 403-410 (1977).

Berman, J. G.

J. G. Berman, G. R. Crane, and H. Guggenheim, "Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4," J. Appl. Phys. 46, 4645-4646 (1975).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Buchter, S. C.

Burnett, J. H.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Camlibel, I.

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

Cassanho, A.

Clausier, M.

Q2. M. Rolin and M. Clausier, "Le systeme fluorure de calcium fluorure de baryum - fluroure de magnesium," Rev. Int. Hautes Temp. Refract. 4, 39-42 (1967).

Crane, G. R.

J. G. Berman, G. R. Crane, and H. Guggenheim, "Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4," J. Appl. Phys. 46, 4645-4646 (1975).
[CrossRef]

DiDomenico, M.

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

Duncan, J.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Eibschuetz, M.

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

Fan, T. Y.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Guggenheim, H.

J. G. Berman, G. R. Crane, and H. Guggenheim, "Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4," J. Appl. Phys. 46, 4645-4646 (1975).
[CrossRef]

Guggenheim, H. J.

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

Hauss¨uhl, S.

K. Recker, F. Wallrafen, and S. Hauss¨uhl, "Single crystal growth and optical, elastic, and piezoelectric properties of polar magnesium barium fluoride," J. Cryst. Growth 26, 97-100 (1974).
[CrossRef]

Haussühl, S.

Q1. F. S. Bechthold and S. Haussühl, "Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride," Appl. Phys. A 14, 403-410 (1977).

Hobden, M. V.

M. V. Hobden, "Phase-matched second-harmonic generation in biaxial crystals," J. Appl. Phys. 38, 4365-4372 (1967).
[CrossRef]

Ichinose, N.

K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
[CrossRef]

Jenssen, H. P.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Kaschke, M.

M. Kaschke and C. Koch, "Calculation of nonlinear optical polarization and phase matching in biaxial crystals," Appl. Phys. B 49, 419-423 (1989).
[CrossRef]

Kitamura, K.

K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
[CrossRef]

Koch, C.

M. Kaschke and C. Koch, "Calculation of nonlinear optical polarization and phase matching in biaxial crystals," Appl. Phys. B 49, 419-423 (1989).
[CrossRef]

Liberman, V.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Mason, E. J.

Muramatsu, K.

K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Recker, K.

K. Recker, F. Wallrafen, and S. Hauss¨uhl, "Single crystal growth and optical, elastic, and piezoelectric properties of polar magnesium barium fluoride," J. Cryst. Growth 26, 97-100 (1974).
[CrossRef]

Rolin, M.

Q2. M. Rolin and M. Clausier, "Le systeme fluorure de calcium fluorure de baryum - fluroure de magnesium," Rev. Int. Hautes Temp. Refract. 4, 39-42 (1967).

Rothschild, M.

Shimamura, K.

K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
[CrossRef]

K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
[CrossRef]

Takekawa, K.

K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
[CrossRef]

Víllora, E. G.

K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
[CrossRef]

K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
[CrossRef]

Wallrafen, F.

K. Recker, F. Wallrafen, and S. Hauss¨uhl, "Single crystal growth and optical, elastic, and piezoelectric properties of polar magnesium barium fluoride," J. Cryst. Growth 26, 97-100 (1974).
[CrossRef]

Wemple, S. H.

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

Zayhowski, J. J.

Appl. Phys. A (1)

Q1. F. S. Bechthold and S. Haussühl, "Nonlinear optical properties of orthorhombic barium formate and magnesium barium fluoride," Appl. Phys. A 14, 403-410 (1977).

Appl. Phys. B (1)

M. Kaschke and C. Koch, "Calculation of nonlinear optical polarization and phase matching in biaxial crystals," Appl. Phys. B 49, 419-423 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

K. Shimamura, E. G. Víllora, K. Takekawa, and K. Kitamura, "Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers," Appl. Phys. Lett. 89, 232,911 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

J. Appl. Phys. (2)

M. V. Hobden, "Phase-matched second-harmonic generation in biaxial crystals," J. Appl. Phys. 38, 4365-4372 (1967).
[CrossRef]

J. G. Berman, G. R. Crane, and H. Guggenheim, "Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4," J. Appl. Phys. 46, 4645-4646 (1975).
[CrossRef]

J. Cryst. Growth (2)

K. Shimamura, E. G. Víllora, K. Muramatsu, and N. Ichinose, "Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications," J. Cryst. Growth 275, 128-134 (2005).
[CrossRef]

K. Recker, F. Wallrafen, and S. Hauss¨uhl, "Single crystal growth and optical, elastic, and piezoelectric properties of polar magnesium barium fluoride," J. Cryst. Growth 26, 97-100 (1974).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

M. Eibschuetz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. DiDomenico, "Ferroelectricity in BaM2+F4," Phys. Lett. A 29, 409-410 (1969).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Duncan, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Rev. Int. Hautes Temp. Refract. (1)

Q2. M. Rolin and M. Clausier, "Le systeme fluorure de calcium fluorure de baryum - fluroure de magnesium," Rev. Int. Hautes Temp. Refract. 4, 39-42 (1967).

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

BaMgF4 and LiNbO3 transmittance.

Fig. 2.
Fig. 2.

Wavelength dispersion of the principal refractive indices (na , nb , and nc ) together with the Sellmeier fitting curves.

Fig. 3.
Fig. 3.

Wavelength dispersion of the principal refractive indices (na , nb , and nc ) together with the Sellmeier fitting curves.

Fig. 4.
Fig. 4.

Angle Ω between the optical axis and the crystallographic a-axis as a function of the wavelength.

Fig. 5.
Fig. 5.

Loci of BM directions for BaMgF4 SHG Type I and Type II at specific fundamental wavelengths λ.

Fig. 6.
Fig. 6.

SHG tuning curves for BaMgF4 BM.

Fig. 7.
Fig. 7.

Comparison between BaMgF4 (left) and LiB3O5 (right) BM. Up: SHG (—) and THG (---) loci for 1064 nm fundamental wavelength. Middle and down: effective NL coefficient and ”walk-off”, respectively, as a function of the polar angle Θ.

Fig. 8.
Fig. 8.

Grating periods Λ for SFG by BaMgF4 QPM as a function of λ1 and λ2 . The first graph (left up) shows for reference the corresponding λ3 wavelength. QPM is found for the indicated NL coefficients dij and wave polarizations (e.g. caa corresponds to the electric field vectors Ē1,c Ē2,a Ē3,a ).

Fig. 9.
Fig. 9.

Grating periods Λ for DFG/OPO by BaMgF4 QPM as a function of λ 1,pump and λ 2,signal . The first graph (left up) shows for reference the corresponding λ3 wavelength. QPM is found for the indicated NL coefficients dij and wave polarizations (e.g. aca corresponds to the electric field vectors Ē1,a Ē2,c Ē3,a ).

Fig. 10.
Fig. 10.

Frequency- and wavelength-doubling (SFG and OPO) with BaMgF4 QPM in the whole transparent wavelength region (up) and in detail in the UV-visible region (down).

Fig. 11.
Fig. 11.

Grating periods Λ for SFG QPM emitting at the excimer laser wavelengths: 157 nm F2, 193 nm ArF, and 248 nm KrF.

Fig. 12.
Fig. 12.

Signal/idler wavelengths as a function of the grating period Λ for OPO QPM pumping at the wavelengths: 1064 nm, and 2 µm from a Nd:YAG and an eye-safe laser, respectively.

Fig. 13.
Fig. 13.

Photograph of the SHG from IR to green using a BaMgF4 frequency doubler.

Fig. 14.
Fig. 14.

Photograph of the spot on fluorescent paper excited by the 396 nm SHG from a BaMgF4 frequency doubler.

Fig. 15.
Fig. 15.

Photograph of a c-cut BaMgF4 crystal periodically poled with a period of Λ=6.6 µm.

Tables (6)

Tables Icon

Table 1. Sellmeier coefficients obtained by fitting the experimental data from Fig.2 using the Eq.1.

Tables Icon

Table 2. Conditions for Type I and II BM SHG.

Tables Icon

Table 3. Non-critical phase matching for BMF and LBO SHG.

Tables Icon

Table 4. NL coefficients of BMF and LBO.

Tables Icon

Table 5. Conditions for SFG, DFG and OPO by QPM.

Tables Icon

Table 6. BaMgF4 QPM three-wave mixing configurations depending on the NL coefficient dij . The propagation direction is collinear along the crystallographic axes a or b, always perpendicular to the polarization vectors Ē1,abc and Ē2,abc .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n2=A+Bλ2C+Dλ2λ2E+F λ2
Ω=arccos (nbncna2nc2na2nb2)
sin2Θcos2Φn2nx2+sin2Θsin2Φn2ny2+cos2Θn2nz2=0

Metrics