Abstract

Computation lithography is enabled by a combination of physical understanding, mathematical abstraction, and implementation simplification. An application in the virtual world of computation lithography can be a virtual reality or a virtual virtuality depending on its engineering sensible-ness and technical feasibility. Examples under consideration include design-for-manufacturability and inverse lithography.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).
  2. K. L. Konnerth and F. H. Dill, “In-situ measurement of dielectric thickness during etching or developing process,” IEEE Trans. Electron Devices ED-22(7), 452–456 (1975).
  3. F. Dill, “The basis for lithographic modeling,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 377–382 (2005).
  4. C. A. Mack , “Thirty years of lithography simulation,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 1–12 (2005).
  5. A. Neureuther, “If it moves, simulate it!” in Proc. SPIE, H. J. Levinson and M. V. Dusa, eds.,  vol. 6924, p. 692402 (2008).
  6. M. Yeung, “Modeling aerial images in two and three dimensions,” in Proc. Kodak Microelectronics, pp. 115–126 (1985).
  7. D. Nyyssonen and C. P. Kirk, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A 5(8), 1270–1280 (1988).
  8. K. Lucas, C.-M. Yuan, and A. Strojwas, “A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography,” in Proc. SPIE, J. D. Cuthbert, ed.,  vol. 1674, pp. 252–263 (1992).
  9. T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).
  10. H. P. Urbach and D. A. Bernard, “Modeling latent image formation in photolithography using the Helmholtz equation,” in Proc. SPIE, V. Pol, ed.,  vol. 1264, pp. 278–293 (1990).
  11. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  12. R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).
  13. J. A. Sethian, “Fast marching level set methods for three-dimensional photolithography development,” in Proc. SPIE, G. Fuller, ed.,  vol. 2726, pp. 262–272 (1996).
  14. S. Osher and J. A. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys. 79, 12–49 (1988).
  15. J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).
  16. O. Otto and R. Henderson, “Advances in process matching for rules-based optical proximity correction,” in Proc. SPIE,  vol. 2884, pp. 425–434 (1996).
  17. N. Cobb and A. Zakhor, “Experimental Results on Optical Proximity Correction with Variable Threshold Resist Model,” in Proc. SPIE, G. Fuller, ed.,  vol. 3051, pp. 458–468 (1997).
  18. M. Rieger and J. Stirniman, “Mask fabrication rules for proximity corrected patterns,” in Proc. SPIE,  vol. 2884, pp. 323–332 (1996).
  19. T. Waas, H. Eisenmann, and H. Hartmann, “Proximity Correction for high CD-Accuracy and Process Tolerance,” in Proc. Symposium on Nanocircuit Engineering (1994).
  20. H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).
  21. H. Gamo, “Matrix Treatment of Partial Coherence,” in Progress in Optics, E. Wolf, ed.,  vol. 3, pp. 187–332 (North-Holland, 1964).
  22. Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns,” IEEE Trans. Semi. Manufactur. 10(1), 62–74 (1997).
  23. A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).
  24. M. Born and E. Wolf, Principles of Optics, pp. 491–555, sixth ed. (Pergamon Press, 1980).
  25. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2004).
  26. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
  27. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).
  28. J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation,” in Proc. SPIE, K. R. Kimmel and W. Staud, eds.,  vol. 5256, pp. 919–925 (2003).
  29. S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).
  30. H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).
  31. A. K. K. Wong and E. Y. Lam, “The Nebulous Hotspot and Algorithm Variability,” in Proc. SPIE,  vol. 7275, p. 727509 (2009).
  32. J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.
  33. S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).
  34. L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): What is the impact to the photomask industry?” in Proc. SPIE, M. Hoga, ed.,  vol. 6283, p. 62830X (2006).
  35. S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16, 14,746–14,760 (2008).
  36. A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).
    [PubMed]
  37. N. Jia, A. K. Wong, and E. Y. Lam, “Robust Photomask Design with Defocus Variation Using Inverse Synthesis,” in Proc. SPIE,  vol. 7140, p. 71401W (2008).
  38. E. Y. Lam and J. W. Goodman, “Iterative Statistical Approach to Blind Image Deconvolution,” J. Opt. Soc. Am. A 17(7), 1177–1184 (2000).
  39. B. Yenikaya and A. Sezginer, “A rigorous method to determine printability of a target layout,” in Proc. SPIE, A. K. K. Wong and V. K. Singh, eds.,  vol. 6521, p. 652112 (2007).
  40. A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).
  41. W. H. Arnold, “Guest Editorial: Special Section on Double-Patterning Lithography,” J. Micro/Nanolith. MEMS MOEMS 8(1), 011,001 (2009).

2009 (2)

A. K. K. Wong and E. Y. Lam, “The Nebulous Hotspot and Algorithm Variability,” in Proc. SPIE,  vol. 7275, p. 727509 (2009).

W. H. Arnold, “Guest Editorial: Special Section on Double-Patterning Lithography,” J. Micro/Nanolith. MEMS MOEMS 8(1), 011,001 (2009).

2008 (5)

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16, 14,746–14,760 (2008).

N. Jia, A. K. Wong, and E. Y. Lam, “Robust Photomask Design with Defocus Variation Using Inverse Synthesis,” in Proc. SPIE,  vol. 7140, p. 71401W (2008).

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

A. Neureuther, “If it moves, simulate it!” in Proc. SPIE, H. J. Levinson and M. V. Dusa, eds.,  vol. 6924, p. 692402 (2008).

2007 (2)

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).
[PubMed]

B. Yenikaya and A. Sezginer, “A rigorous method to determine printability of a target layout,” in Proc. SPIE, A. K. K. Wong and V. K. Singh, eds.,  vol. 6521, p. 652112 (2007).

2006 (1)

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): What is the impact to the photomask industry?” in Proc. SPIE, M. Hoga, ed.,  vol. 6283, p. 62830X (2006).

2005 (2)

F. Dill, “The basis for lithographic modeling,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 377–382 (2005).

C. A. Mack , “Thirty years of lithography simulation,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 1–12 (2005).

2004 (1)

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

2003 (2)

J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation,” in Proc. SPIE, K. R. Kimmel and W. Staud, eds.,  vol. 5256, pp. 919–925 (2003).

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

2002 (1)

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

2000 (1)

E. Y. Lam and J. W. Goodman, “Iterative Statistical Approach to Blind Image Deconvolution,” J. Opt. Soc. Am. A 17(7), 1177–1184 (2000).

1998 (1)

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).

1997 (3)

Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns,” IEEE Trans. Semi. Manufactur. 10(1), 62–74 (1997).

J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).

N. Cobb and A. Zakhor, “Experimental Results on Optical Proximity Correction with Variable Threshold Resist Model,” in Proc. SPIE, G. Fuller, ed.,  vol. 3051, pp. 458–468 (1997).

1996 (3)

M. Rieger and J. Stirniman, “Mask fabrication rules for proximity corrected patterns,” in Proc. SPIE,  vol. 2884, pp. 323–332 (1996).

O. Otto and R. Henderson, “Advances in process matching for rules-based optical proximity correction,” in Proc. SPIE,  vol. 2884, pp. 425–434 (1996).

J. A. Sethian, “Fast marching level set methods for three-dimensional photolithography development,” in Proc. SPIE, G. Fuller, ed.,  vol. 2726, pp. 262–272 (1996).

1992 (1)

K. Lucas, C.-M. Yuan, and A. Strojwas, “A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography,” in Proc. SPIE, J. D. Cuthbert, ed.,  vol. 1674, pp. 252–263 (1992).

1991 (1)

R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).

1990 (1)

H. P. Urbach and D. A. Bernard, “Modeling latent image formation in photolithography using the Helmholtz equation,” in Proc. SPIE, V. Pol, ed.,  vol. 1264, pp. 278–293 (1990).

1988 (2)

S. Osher and J. A. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys. 79, 12–49 (1988).

D. Nyyssonen and C. P. Kirk, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A 5(8), 1270–1280 (1988).

1987 (1)

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).

1975 (2)

F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).

K. L. Konnerth and F. H. Dill, “In-situ measurement of dielectric thickness during etching or developing process,” IEEE Trans. Electron Devices ED-22(7), 452–456 (1975).

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

1964 (1)

H. Gamo, “Matrix Treatment of Partial Coherence,” in Progress in Optics, E. Wolf, ed.,  vol. 3, pp. 187–332 (North-Holland, 1964).

Abrams, D.

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): What is the impact to the photomask industry?” in Proc. SPIE, M. Hoga, ed.,  vol. 6283, p. 62830X (2006).

Arnold, W. H.

W. H. Arnold, “Guest Editorial: Special Section on Double-Patterning Lithography,” J. Micro/Nanolith. MEMS MOEMS 8(1), 011,001 (2009).

Banerjee, S.

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

Bernard, D. A.

H. P. Urbach and D. A. Bernard, “Modeling latent image formation in photolithography using the Helmholtz equation,” in Proc. SPIE, V. Pol, ed.,  vol. 1264, pp. 278–293 (1990).

Born, M.

M. Born and E. Wolf, Principles of Optics, pp. 491–555, sixth ed. (Pergamon Press, 1980).

Bukofsky, S.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Caldwell, R.

J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).

Chan, S. H.

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16, 14,746–14,760 (2008).

Chen, J. F.

J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).

Cobb, N.

N. Cobb and A. Zakhor, “Experimental Results on Optical Proximity Correction with Variable Threshold Resist Model,” in Proc. SPIE, G. Fuller, ed.,  vol. 3051, pp. 458–468 (1997).

Cobb, N. B.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Cui, Y.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Culp, J. A.

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

Dill, F.

F. Dill, “The basis for lithographic modeling,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 377–382 (2005).

Dill, F. H.

F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).

K. L. Konnerth and F. H. Dill, “In-situ measurement of dielectric thickness during etching or developing process,” IEEE Trans. Electron Devices ED-22(7), 452–456 (1975).

Eisenmann, H.

T. Waas, H. Eisenmann, and H. Hartmann, “Proximity Correction for high CD-Accuracy and Process Tolerance,” in Proc. Symposium on Nanocircuit Engineering (1994).

Elakkumanan, P.

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

Fan, M.

J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation,” in Proc. SPIE, K. R. Kimmel and W. Staud, eds.,  vol. 5256, pp. 919–925 (2003).

Fonseca, C.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Gallatin, G.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Gamelin, J.

R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).

Gamo, H.

H. Gamo, “Matrix Treatment of Partial Coherence,” in Progress in Optics, E. Wolf, ed.,  vol. 3, pp. 187–332 (North-Holland, 1964).

Ghazanfarian, A. A.

Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns,” IEEE Trans. Semi. Manufactur. 10(1), 62–74 (1997).

Goodman, J. W.

E. Y. Lam and J. W. Goodman, “Iterative Statistical Approach to Blind Image Deconvolution,” J. Opt. Soc. Am. A 17(7), 1177–1184 (2000).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2004).

Gordon, R.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Granik, Y.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Guerrieri, R.

R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).

Hartmann, H.

T. Waas, H. Eisenmann, and H. Hartmann, “Proximity Correction for high CD-Accuracy and Process Tolerance,” in Proc. Symposium on Nanocircuit Engineering (1994).

Hasegawa, N.

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).

Hashimoto, K.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Hauge, P.

F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).

Henderson, R.

O. Otto and R. Henderson, “Advances in process matching for rules-based optical proximity correction,” in Proc. SPIE,  vol. 2884, pp. 425–434 (1996).

Hibbs, M.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Hinsberg, W.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Hoffnagle, J.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Hornberger, W.

F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).

Houle, F.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Hu, C.

J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.

Huang, J. H.

J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.

Inoue, S.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Jeng, M. C.

J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.

Jia, N.

N. Jia, A. K. Wong, and E. Y. Lam, “Robust Photomask Design with Defocus Variation Using Inverse Synthesis,” in Proc. SPIE,  vol. 7140, p. 71401W (2008).

Karklin, L.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).

Kim, J.

J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation,” in Proc. SPIE, K. R. Kimmel and W. Staud, eds.,  vol. 5256, pp. 919–925 (2003).

Kirk, C. P.

D. Nyyssonen and C. P. Kirk, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A 5(8), 1270–1280 (1988).

Ko, P. K.

J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.

Konnerth, K. L.

K. L. Konnerth and F. H. Dill, “In-situ measurement of dielectric thickness during etching or developing process,” IEEE Trans. Electron Devices ED-22(7), 452–456 (1975).

Kotani, T.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Lai, K.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Laidig, T.

J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).

Lam, E. Y.

A. K. K. Wong and E. Y. Lam, “The Nebulous Hotspot and Algorithm Variability,” in Proc. SPIE,  vol. 7275, p. 727509 (2009).

N. Jia, A. K. Wong, and E. Y. Lam, “Robust Photomask Design with Defocus Variation Using Inverse Synthesis,” in Proc. SPIE,  vol. 7140, p. 71401W (2008).

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16, 14,746–14,760 (2008).

E. Y. Lam and J. W. Goodman, “Iterative Statistical Approach to Blind Image Deconvolution,” J. Opt. Soc. Am. A 17(7), 1177–1184 (2000).

Liebmann, L. W.

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Liu, H.-Y.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).

Liu, Y.

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): What is the impact to the photomask industry?” in Proc. SPIE, M. Hoga, ed.,  vol. 6283, p. 62830X (2006).

Lucas, K.

K. Lucas, C.-M. Yuan, and A. Strojwas, “A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography,” in Proc. SPIE, J. D. Cuthbert, ed.,  vol. 1674, pp. 252–263 (1992).

Lui, Z. H.

J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.

Lvov, A.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Mack, C. A.

C. A. Mack , “Thirty years of lithography simulation,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 1–12 (2005).

Mashita, H.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Matsuzawa, T.

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).

Maurer, W.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Milanfar, P.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).
[PubMed]

Molless, A. F.

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Moniwa, A.

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).

Mukai, H.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Nakajima, F.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Neureuther, A.

A. Neureuther, “If it moves, simulate it!” in Proc. SPIE, H. J. Levinson and M. V. Dusa, eds.,  vol. 6924, p. 692402 (2008).

R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).

Nyyssonen, D.

D. Nyyssonen and C. P. Kirk, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A 5(8), 1270–1280 (1988).

Oberschmidt, J. M.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Orshansky, M.

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

Osher, S.

S. Osher and J. A. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys. 79, 12–49 (1988).

Otto, O.

O. Otto and R. Henderson, “Advances in process matching for rules-based optical proximity correction,” in Proc. SPIE,  vol. 2884, pp. 425–434 (1996).

Pang, L.

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): What is the impact to the photomask industry?” in Proc. SPIE, M. Hoga, ed.,  vol. 6283, p. 62830X (2006).

Pati, Y. C.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).

Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns,” IEEE Trans. Semi. Manufactur. 10(1), 62–74 (1997).

Pease, R. F.

Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns,” IEEE Trans. Semi. Manufactur. 10(1), 62–74 (1997).

Poonawala, A.

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).
[PubMed]

Rieger, M.

M. Rieger and J. Stirniman, “Mask fabrication rules for proximity corrected patterns,” in Proc. SPIE,  vol. 2884, pp. 323–332 (1996).

Rosenbluth, A. E.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Sanchez, M.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Sato, K.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Seong, N.

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

Sethian, J. A.

J. A. Sethian, “Fast marching level set methods for three-dimensional photolithography development,” in Proc. SPIE, G. Fuller, ed.,  vol. 2726, pp. 262–272 (1996).

S. Osher and J. A. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys. 79, 12–49 (1988).

Sezginer, A.

B. Yenikaya and A. Sezginer, “A rigorous method to determine printability of a target layout,” in Proc. SPIE, A. K. K. Wong and V. K. Singh, eds.,  vol. 6521, p. 652112 (2007).

Shang, S. D.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Shaw, J.

F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).

Singh, R. N.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Stirniman, J.

M. Rieger and J. Stirniman, “Mask fabrication rules for proximity corrected patterns,” in Proc. SPIE,  vol. 2884, pp. 323–332 (1996).

Strojwas, A.

K. Lucas, C.-M. Yuan, and A. Strojwas, “A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography,” in Proc. SPIE, J. D. Cuthbert, ed.,  vol. 1674, pp. 252–263 (1992).

Sunami, H.

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).

Tadros, K. H.

R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).

Tanaka, S.

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

Urbach, H. P.

H. P. Urbach and D. A. Bernard, “Modeling latent image formation in photolithography using the Helmholtz equation,” in Proc. SPIE, V. Pol, ed.,  vol. 1264, pp. 278–293 (1990).

Vampatella, B. R.

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

Waas, T.

T. Waas, H. Eisenmann, and H. Hartmann, “Proximity Correction for high CD-Accuracy and Process Tolerance,” in Proc. Symposium on Nanocircuit Engineering (1994).

Wampler, K.

J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).

Wang, Y.-T.

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, pp. 491–555, sixth ed. (Pergamon Press, 1980).

Wong, A. K.

N. Jia, A. K. Wong, and E. Y. Lam, “Robust Photomask Design with Defocus Variation Using Inverse Synthesis,” in Proc. SPIE,  vol. 7140, p. 71401W (2008).

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16, 14,746–14,760 (2008).

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).

A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).

Wong, A. K. K.

A. K. K. Wong and E. Y. Lam, “The Nebulous Hotspot and Algorithm Variability,” in Proc. SPIE,  vol. 7275, p. 727509 (2009).

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

Yenikaya, B.

B. Yenikaya and A. Sezginer, “A rigorous method to determine printability of a target layout,” in Proc. SPIE, A. K. K. Wong and V. K. Singh, eds.,  vol. 6521, p. 652112 (2007).

Yeung, M.

M. Yeung, “Modeling aerial images in two and three dimensions,” in Proc. Kodak Microelectronics, pp. 115–126 (1985).

Yuan, C.-M.

K. Lucas, C.-M. Yuan, and A. Strojwas, “A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography,” in Proc. SPIE, J. D. Cuthbert, ed.,  vol. 1674, pp. 252–263 (1992).

Zakhor, A.

N. Cobb and A. Zakhor, “Experimental Results on Optical Proximity Correction with Variable Threshold Resist Model,” in Proc. SPIE, G. Fuller, ed.,  vol. 3051, pp. 458–468 (1997).

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. (2)

R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, “Massively parallel algorithms for scattering in optical lithography,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091–1100 (1991).

T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, “Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate,” IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446–451 (1987).

IEEE Trans. Electron Devices (2)

F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, “Characterization of positive photoresists,” IEEE Trans. Electron Devices ED-22(7), 445–452 (1975).

K. L. Konnerth and F. H. Dill, “In-situ measurement of dielectric thickness during etching or developing process,” IEEE Trans. Electron Devices ED-22(7), 452–456 (1975).

IEEE Trans. Image Process. (1)

A. Poonawala and P. Milanfar, “Mask design for optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).
[PubMed]

IEEE Trans. Semi. Manufactur. (1)

Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, “Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns,” IEEE Trans. Semi. Manufactur. 10(1), 62–74 (1997).

in Proc. SPIE (19)

A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, “Fast calculation of images for high numerical aperture lithography,” in Proc. SPIE, B. Smith, ed.,  vol. 5377, pp. 615–628 (2004).

J. Kim and M. Fan, “Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation,” in Proc. SPIE, K. R. Kimmel and W. Staud, eds.,  vol. 5256, pp. 919–925 (2003).

S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, “Failure prediction across process window for robust OPC,” in Proc. SPIE, A. Yen, ed.,  vol. 5040, pp. 431–440 (2003).

H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, “Tool-induced hotspot fixing flow for high volume products,” in Proc. SPIE,  vol. 7028, p. 70283I (2008).

A. K. K. Wong and E. Y. Lam, “The Nebulous Hotspot and Algorithm Variability,” in Proc. SPIE,  vol. 7275, p. 727509 (2009).

N. Jia, A. K. Wong, and E. Y. Lam, “Robust Photomask Design with Defocus Variation Using Inverse Synthesis,” in Proc. SPIE,  vol. 7140, p. 71401W (2008).

B. Yenikaya and A. Sezginer, “A rigorous method to determine printability of a target layout,” in Proc. SPIE, A. K. K. Wong and V. K. Singh, eds.,  vol. 6521, p. 652112 (2007).

H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, “Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances,” in Proc. SPIE,  vol. 3334, pp. 2–14 (1998).

S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, “Electrically driven optical proximity correction,” in Proc. SPIE, V. K. Singh and M. L. Rieger, eds.,  vol. 6925, p. 69251W (2008).

L. Pang, Y. Liu, and D. Abrams, “Inverse lithography technology (ILT): What is the impact to the photomask industry?” in Proc. SPIE, M. Hoga, ed.,  vol. 6283, p. 62830X (2006).

F. Dill, “The basis for lithographic modeling,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 377–382 (2005).

C. A. Mack , “Thirty years of lithography simulation,” in Proc. SPIE, B. W. Smith, ed.,  vol. 5754, pp. 1–12 (2005).

A. Neureuther, “If it moves, simulate it!” in Proc. SPIE, H. J. Levinson and M. V. Dusa, eds.,  vol. 6924, p. 692402 (2008).

H. P. Urbach and D. A. Bernard, “Modeling latent image formation in photolithography using the Helmholtz equation,” in Proc. SPIE, V. Pol, ed.,  vol. 1264, pp. 278–293 (1990).

K. Lucas, C.-M. Yuan, and A. Strojwas, “A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography,” in Proc. SPIE, J. D. Cuthbert, ed.,  vol. 1674, pp. 252–263 (1992).

J. A. Sethian, “Fast marching level set methods for three-dimensional photolithography development,” in Proc. SPIE, G. Fuller, ed.,  vol. 2726, pp. 262–272 (1996).

O. Otto and R. Henderson, “Advances in process matching for rules-based optical proximity correction,” in Proc. SPIE,  vol. 2884, pp. 425–434 (1996).

N. Cobb and A. Zakhor, “Experimental Results on Optical Proximity Correction with Variable Threshold Resist Model,” in Proc. SPIE, G. Fuller, ed.,  vol. 3051, pp. 458–468 (1997).

M. Rieger and J. Stirniman, “Mask fabrication rules for proximity corrected patterns,” in Proc. SPIE,  vol. 2884, pp. 323–332 (1996).

in Progress in Optics (1)

H. Gamo, “Matrix Treatment of Partial Coherence,” in Progress in Optics, E. Wolf, ed.,  vol. 3, pp. 187–332 (North-Holland, 1964).

J. Comput. Phys. (1)

S. Osher and J. A. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Phys. 79, 12–49 (1988).

J. Micro/Nanolith. MEMS MOEMS (1)

W. H. Arnold, “Guest Editorial: Special Section on Double-Patterning Lithography,” J. Micro/Nanolith. MEMS MOEMS 8(1), 011,001 (2009).

J. Microlithogr., Microfabr., Microsyst. (1)

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlithogr., Microfabr., Microsyst. 1(1), 13–30 (2002).

J. Opt. Soc. Am. A (2)

E. Y. Lam and J. W. Goodman, “Iterative Statistical Approach to Blind Image Deconvolution,” J. Opt. Soc. Am. A 17(7), 1177–1184 (2000).

D. Nyyssonen and C. P. Kirk, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A 5(8), 1270–1280 (1988).

J. Vac. Sci. Technol. B (1)

J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, “Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars,” J. Vac. Sci. Technol. B 15(6), 2426–2433 (1997).

Opt. Express (1)

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography,” Opt. Express 16, 14,746–14,760 (2008).

Other (7)

J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, “A Robust Physical and Predictive Model for Deep-Submicrometer MOS Circuit Simulation,” Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.

M. Born and E. Wolf, Principles of Optics, pp. 491–555, sixth ed. (Pergamon Press, 1980).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2004).

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).

A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).

T. Waas, H. Eisenmann, and H. Hartmann, “Proximity Correction for high CD-Accuracy and Process Tolerance,” in Proc. Symposium on Nanocircuit Engineering (1994).

M. Yeung, “Modeling aerial images in two and three dimensions,” in Proc. Kodak Microelectronics, pp. 115–126 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of a projection microlithography exposure system [26].

Fig. 2.
Fig. 2.

An example of inverse lithography with no regularization.

Fig. 3.
Fig. 3.

An example of inverse lithography designed for robustness against defocus.

Fig. 4.
Fig. 4.

The reality-virtuality space of computation lithography (not to scale).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I xy = + w (xxo,yyo;xxo,yyo) O (xo,yo) O* (xo,yo) d xo d yo d xo d yo ,
where w (xo,yo;xo,yo) =J (xoxo,yoyo) H (xo,yo)H*(xo,yo),
J (xoxo,yoyo) is the mutual intensity ,
H xy is the optical system transfer function ,
O xy is the mask transmittance ,
I ( x , y ) k=1Kλk ∫∫−∞+∞φk(xx,yy) O ( x , y ) dx d y 2 .
I xy k=1K n=1Ntfg [ψk(xx1(n),yy1(n))ψk(xx2(n),yy1(n))+
ψk(xx2(n),yy2(n))ψk(xx1(n),yy2(n))] 2 ,
Oopt xy =argOxymin{0,1} Σx,y[11+exp{a(HxyOxy2tr)}Îxy]2
Oopt xy =argOxymin{0,1} β{Σx,y[11+exp{a(HxyOxy2tr)}Îxy]2},

Metrics