Abstract

The experimental demonstration and characterization is made of the plasmon-mediated resonant transmission through an embedded undulated continuous thin metal film under normal incidence. 1D undulations are shown to enable a spatially resolved polarisation filtering whereas 2D undulations lead to spatially resolved, polarization independent transmission. Whereas the needed submicron microstructure lends itself in principle to CD-like low-cost mass replication by means of injection moulding and embossing, the present paper demonstrates the expected transmission effects on experimental models based on metal-coated photoresist gratings. The spectral and angular dependence in the neighbourhood of resonance are investigated and the question of the excess losses exhibited by surface plasmons is discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
    [CrossRef]
  3. N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
    [CrossRef]
  4. I. Avrutsky, Y. Zhao, and V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25(9), 595–597 (2000).
    [CrossRef]
  5. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).
    [CrossRef]
  6. S. Wedge and W. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef]
  8. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
    [CrossRef]
  9. Y. Jourlin, E. Gamet, S. Tonchev, A. V. Tishchenko, O. Parriaux, and A. Last, “Low loss polarizing beam splitter using the long range plasmon mode along a continuous metal film,” Proc. SPIE 6187 (2006).
  10. F. Pigeon, I. F Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
    [CrossRef]
  11. D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9831–9842 (2007).
    [CrossRef]
  12. L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38(2), 304–313 (1999).
    [CrossRef]
  13. N. Lyndin, “MC Grating Software Development Company,” http://www.mcgrating.com/ (April 2009).
  14. I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
    [CrossRef]
  15. R. A. Innes and J. R. Sambles, ““Optical characterisation of gold using surface plasmon-polaritons”, 1987,” J. Phys. F Met. Phys. 17(1), 277–287 (1987).
    [CrossRef]
  16. A. Degiron, P. Berini, and R. Smith, “Guiding Ligth with Long Range Plasmon,” Opt. Photon. News 19(7), 28–34 (2008).
    [CrossRef]
  17. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
    [CrossRef]
  18. B. Bai, L. Li, and L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
    [CrossRef]

2008 (1)

A. Degiron, P. Berini, and R. Smith, “Guiding Ligth with Long Range Plasmon,” Opt. Photon. News 19(7), 28–34 (2008).
[CrossRef]

2007 (1)

2005 (2)

B. Bai, L. Li, and L. Zeng, “Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes,” Opt. Lett. 30(18), 2360–2362 (2005).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

2004 (1)

2003 (3)

N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

2001 (1)

F. Pigeon, I. F Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

1997 (1)

1987 (1)

R. A. Innes and J. R. Sambles, ““Optical characterisation of gold using surface plasmon-polaritons”, 1987,” J. Phys. F Met. Phys. 17(1), 277–287 (1987).
[CrossRef]

1985 (1)

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
[CrossRef]

Arakawa, E. T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
[CrossRef]

Avrutsky, I.

Bai, B.

Baida, F. I.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

Barnes, W.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).
[CrossRef]

Berini, P.

A. Degiron, P. Berini, and R. Smith, “Guiding Ligth with Long Range Plasmon,” Opt. Photon. News 19(7), 28–34 (2008).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Bonod, N.

Chandezon, J.

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Degiron, A.

A. Degiron, P. Berini, and R. Smith, “Guiding Ligth with Long Range Plasmon,” Opt. Photon. News 19(7), 28–34 (2008).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

Evgeny, P.

Flury, M.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Goudonnet, J. P.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
[CrossRef]

Granet, G.

Inagaki, T.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
[CrossRef]

Innes, R. A.

R. A. Innes and J. R. Sambles, ““Optical characterisation of gold using surface plasmon-polaritons”, 1987,” J. Phys. F Met. Phys. 17(1), 277–287 (1987).
[CrossRef]

Kitson, S. C.

Kochergin, V.

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, L.

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

Motosuga, M.

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
[CrossRef]

Neviere, M.

Parriaux, O.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9831–9842 (2007).
[CrossRef]

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Pietroy, D.

Pigeon, F.

F. Pigeon, I. F Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

Plumey, J. P.

Preist, T. W.

Pudonin, F. A.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Salakhutdinov, I. F

F. Pigeon, I. F Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

Salakhutdinov, I. F.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Sambles, J. R.

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14(7), 1654–1661 (1997).
[CrossRef]

R. A. Innes and J. R. Sambles, ““Optical characterisation of gold using surface plasmon-polaritons”, 1987,” J. Phys. F Met. Phys. 17(1), 277–287 (1987).
[CrossRef]

Smith, R.

A. Degiron, P. Berini, and R. Smith, “Guiding Ligth with Long Range Plasmon,” Opt. Photon. News 19(7), 28–34 (2008).
[CrossRef]

Sychugov, V. A.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tishchenko, A. V.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9831–9842 (2007).
[CrossRef]

F. Pigeon, I. F Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Usievich, B. A.

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

Wedge, S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Zeng, L.

Zhao, Y.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

I. F. Salakhutdinov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, O. Parriaux, and F. A. Pudonin, “Anomalous light reflection at the surface of a corrugated thin metal film,” IEEE J. Quantum Electron. 34(6), 1054–1060 (1998).
[CrossRef]

J. Appl. Phys. (2)

F. Pigeon, I. F Salakhutdinov, and A. V. Tishchenko, “Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors,” J. Appl. Phys. 90(2), 852–859 (2001).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. F Met. Phys. (1)

R. A. Innes and J. R. Sambles, ““Optical characterisation of gold using surface plasmon-polaritons”, 1987,” J. Phys. F Met. Phys. 17(1), 277–287 (1987).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “T. Thio P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Photon. News (1)

A. Degiron, P. Berini, and R. Smith, “Guiding Ligth with Long Range Plasmon,” Opt. Photon. News 19(7), 28–34 (2008).
[CrossRef]

Phys. Rev. B (2)

T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32(10), 6238–6245 (1985).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

Other (2)

Y. Jourlin, E. Gamet, S. Tonchev, A. V. Tishchenko, O. Parriaux, and A. Last, “Low loss polarizing beam splitter using the long range plasmon mode along a continuous metal film,” Proc. SPIE 6187 (2006).

N. Lyndin, “MC Grating Software Development Company,” http://www.mcgrating.com/ (April 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Longitudinal electric fields Ez of the TMo (short range) and TMe (long range) modes propagating in an symmetrically embedded thin metal film

Fig. 2.
Fig. 2.

k-vector diagram of the synchronism contra-directional coupling between the incident wave and the plasmon modes

Fig. 3.
Fig. 3.

Reflection and transmission spectra of an undulated metal film embedded in a homogenous medium versus the period Λ

Fig. 4.
Fig. 4.

TE and TM polarisation transmission trough a gold layer of 30 nm thickness under normal incidence versus wavelength. The period is 533 nm

Fig. 5.
Fig. 5.

Picture of a resist and gold coated glass wafer with the grating of 533 nm period and 70 nm depth covering half of the area (a) and AFM scan of the corrugated part (b).

Fig. 6.
Fig. 6.

Measured spectral transmission under normal incidence with an Aluminium layer

Fig. 7.
Fig. 7.

Measured spectral transmission under normal incidence with a gold layer deposited by slow evaporation process.

Fig. 8.
Fig. 8.

Transmission power of the TM polarization versus the wavelength for different incidence angles. Experimental results (a) and modeling results (b). The period is 533 nm

Fig. 9.
Fig. 9.

Incidence angle dependence of the transmission at 890 nm wavelength. Grating period is 533 nm.

Fig. 10.
Fig. 10.

AFM scan of a 2D resist grating printed by two successive orthogonal 1D exposure after uniform UV flood. The period of each 1D interferogram is 533 nm.

Fig. 11.
Fig. 11.

Picture of the diffracted orders generated in air by the 2D grating. The lines of the orthogonal intreferograms are along the diagonals of the picture.

Fig. 12.
Fig. 12.

Measured spectral transmission under normal incidence on 2D gratings. Aluminum grating (a) – Gold grating (b).

Fig. 13.
Fig. 13.

Optical microscope picture of an optical disk (a) and AFM scan of the 2D grating and flat zones (b)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

tanh(kmw2)+kcεmkmnc2=0
tanh(kmw2)+kmnc2kεm=0
neenc+12nc(k0(nc2εm)wnc22εm)2

Metrics