Abstract

We demonstrate an innovating design to validate and to optimise the real-time performance of an all-optical oscilloscope at 1053-1064 nm. A unique broadband pulse is generated by means of frequency beats and of proper optical-shaping, which helps us to evidence a signal bandwidth of 100 GHz and a dynamics range in excess of 25 dB. Gain-narrowing and dispersion effects due to the replication of the input pulse are shown to be the first limitations in the broadband capabilities.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Andrekson, "Ultrahigh bandwidth optical sampling oscilloscopes," Optical Fiber Conference, Inv. paper TuO1 (2004).
  2. D. Besnard, La ligne d’intégration laser - Présentation du thème, CHOCS 29, revue scientifique et technique CEA / DAM (2004).
  3. D. U. Noske and J. R. Taylor, "Picosecond optical sampling," Electron. Lett. 27, 1739 - 1741 (1991).
    [CrossRef]
  4. Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
    [CrossRef]
  5. D. J. Kane and R. Trebino, "Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating," Opt. Lett. 18, 823-825 (1993).
    [CrossRef] [PubMed]
  6. C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J. P. Rousseau, P. Rousseau, J. P. Chambaret, and F. Salin, "Single-shot real-time characterization of chirped-pulse amplification systems by spectral phase interferometry for direct electric-field reconstruction," Opt. Lett. 24, 1644-1646 (1999).
    [CrossRef]
  7. J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, and J. D. Zuegel, "Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry," Opt. Lett. 31, 3523-3525 (2006).
    [CrossRef] [PubMed]
  8. Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
    [CrossRef]
  9. C. Dorrer, "Single-shot measurement of the electric field of optical sources using time magnification and heterodyning," Conference on Lasers and Electro-Optics, paper CTuC6 (2006).
  10. C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, " 640 GHz real-time recording using temporal imaging," Conference on Lasers and Electro-Optics, paper CTuA6 (2008).
  11. J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
    [CrossRef]
  12. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A.L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009).
    [CrossRef] [PubMed]
  13. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
    [CrossRef] [PubMed]
  14. K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
    [CrossRef]
  15. J. Kringlebotn and P. Morkel, "Amplified Fibre Delay Line with 27000 Recirculations," Electron. Lett. 28,201 (1992).
    [CrossRef]
  16. C. Dorrer, J. Bromage, and J.D. Zuegel, " High-dynamic-range, single-shot cross-correlator using a pulse replicator," Conference on Lasers and Electro-Optics, paper JTuA51 (2008).
  17. A. Jolly, J. C. Jolly, and J. F. Gleyze, "Static and Synchronised Switching Noise Management of Replicated Optical Pulse Trains," Opt. Commun. 264, 89-96 (2006).
    [CrossRef]
  18. T. Yoshimatsu, S. Kodama, and H. Ito, "Novel ultrafast monolithic optical gate integrating uni-travelling-carrier photodiode and InP-based Mach-Zehnder modulator," ECOC Conference, paper Th 261 (2005).
  19. D. A. Reid, P. J. Maguire, L. P. Barry, Q. T. Le, S. Lobo, M. Gay, L. Bramerie, M. Joindot, J. C. Simon, D. Massoubre, J. L. Oudar, and G. Aubin, "All-optical sampling in a multiple quantum well saturable absorber," Optical Fiber Conference, paper OthG4 (2008).
  20. M. Skold, M. Westlund, H. Sunnerud, and P. A. Andrekson, "100 Gsample/s optical real-time sampling system with Nyquist-limited bandwidth," ECOC Conference, postdeadline paper (2007).
  21. J. Li, P. O. Hedekvist and P. A. Andrekson, "300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Phot. Tech. Lett. 13, 987-989 (2001).
    [CrossRef]
  22. A. Jolly and C. Granier, "All-Optical Sampling with Sagnac Switches Using Closed Pump and Signal Wavelengths near 1µm," Opt. Commun. 281, 3861 - 3871 (2008).
    [CrossRef]
  23. O. Morice, "MIRO: Complete modelling and software for pulse amplification and propagation in high - power laser systems," Opt. Eng. 42, 1530-1541 (2003).
    [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, Ed. by P.F. Liao and P.L. Kelley, (Academic Press Inc 1989).
  25. B. Ibarra-Escamilla, E. A. Kuzin, P. Zaca-Moran, R. Grajales-Coutino, and F. Mendez-Martinez, "Experimental investigation of the nonlinear optical loop mirror with twisted fiber and birefringence bias," Opt. Express 13, 10760 (2005).
    [CrossRef] [PubMed]

2009

2008

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

A. Jolly and C. Granier, "All-Optical Sampling with Sagnac Switches Using Closed Pump and Signal Wavelengths near 1µm," Opt. Commun. 281, 3861 - 3871 (2008).
[CrossRef]

2007

J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

2006

2005

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

B. Ibarra-Escamilla, E. A. Kuzin, P. Zaca-Moran, R. Grajales-Coutino, and F. Mendez-Martinez, "Experimental investigation of the nonlinear optical loop mirror with twisted fiber and birefringence bias," Opt. Express 13, 10760 (2005).
[CrossRef] [PubMed]

2004

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

2003

O. Morice, "MIRO: Complete modelling and software for pulse amplification and propagation in high - power laser systems," Opt. Eng. 42, 1530-1541 (2003).
[CrossRef]

2001

J. Li, P. O. Hedekvist and P. A. Andrekson, "300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Phot. Tech. Lett. 13, 987-989 (2001).
[CrossRef]

1999

1998

K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
[CrossRef]

1993

1992

J. Kringlebotn and P. Morkel, "Amplified Fibre Delay Line with 27000 Recirculations," Electron. Lett. 28,201 (1992).
[CrossRef]

1991

D. U. Noske and J. R. Taylor, "Picosecond optical sampling," Electron. Lett. 27, 1739 - 1741 (1991).
[CrossRef]

Andrekson, P. A.

J. Li, P. O. Hedekvist and P. A. Andrekson, "300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Phot. Tech. Lett. 13, 987-989 (2001).
[CrossRef]

Begishev, I. A.

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Bromage, J.

Chambaret, J. P.

Chen, A.

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

Chen, G.

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

Chou, J.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

de Beauvoir, B.

Deng, K. L.

K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
[CrossRef]

Dorrer, C.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A.L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Gaeta, A.L.

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A.L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Glesk, I.

K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
[CrossRef]

Gleyze, J. F.

A. Jolly, J. C. Jolly, and J. F. Gleyze, "Static and Synchronised Switching Noise Management of Replicated Optical Pulse Trains," Opt. Commun. 264, 89-96 (2006).
[CrossRef]

Grajales-Coutino, R.

Granier, C.

A. Jolly and C. Granier, "All-Optical Sampling with Sagnac Switches Using Closed Pump and Signal Wavelengths near 1µm," Opt. Commun. 281, 3861 - 3871 (2008).
[CrossRef]

Hedekvist, P. O.

J. Li, P. O. Hedekvist and P. A. Andrekson, "300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Phot. Tech. Lett. 13, 987-989 (2001).
[CrossRef]

Ibarra-Escamilla, B.

Ishikawa, K.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Jalali, B.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Jolly, A.

A. Jolly and C. Granier, "All-Optical Sampling with Sagnac Switches Using Closed Pump and Signal Wavelengths near 1µm," Opt. Commun. 281, 3861 - 3871 (2008).
[CrossRef]

A. Jolly, J. C. Jolly, and J. F. Gleyze, "Static and Synchronised Switching Noise Management of Replicated Optical Pulse Trains," Opt. Commun. 264, 89-96 (2006).
[CrossRef]

Jolly, J. C.

A. Jolly, J. C. Jolly, and J. F. Gleyze, "Static and Synchronised Switching Noise Management of Replicated Optical Pulse Trains," Opt. Commun. 264, 89-96 (2006).
[CrossRef]

Kane, D. J.

Kringlebotn, J.

J. Kringlebotn and P. Morkel, "Amplified Fibre Delay Line with 27000 Recirculations," Electron. Lett. 28,201 (1992).
[CrossRef]

Kuzin, E. A.

Le Blanc, C.

Li, J.

J. Li, P. O. Hedekvist and P. A. Andrekson, "300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Phot. Tech. Lett. 13, 987-989 (2001).
[CrossRef]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A.L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Mendez-Martinez, F.

Morice, O.

O. Morice, "MIRO: Complete modelling and software for pulse amplification and propagation in high - power laser systems," Opt. Eng. 42, 1530-1541 (2003).
[CrossRef]

Morkel, P.

J. Kringlebotn and P. Morkel, "Amplified Fibre Delay Line with 27000 Recirculations," Electron. Lett. 28,201 (1992).
[CrossRef]

Noske, D. U.

D. U. Noske and J. R. Taylor, "Picosecond optical sampling," Electron. Lett. 27, 1739 - 1741 (1991).
[CrossRef]

Prucnal, P. R.

K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
[CrossRef]

Ranc, S.

Rousseau, J. P.

Rousseau, P.

Runser, R. J.

K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
[CrossRef]

Sakabe, S.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A.L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Salin, F.

Shimizu, S.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Takagi, Y.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Taylor, J. R.

D. U. Noske and J. R. Taylor, "Picosecond optical sampling," Electron. Lett. 27, 1739 - 1741 (1991).
[CrossRef]

Trebino, R.

Turner-Foster, A. C.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A.L. Gaeta, "High-speed optical sampling using a silicon-chip temporal magnifier," Opt. Express 17, 4324-4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Usechak, N. G.

Wen, X.

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

Yamada, Y.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Yin, Y.

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

Zaca-Moran, P.

Zhang, W.

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

Zuegel, J. D.

Appl. Phys. Lett.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, "Femtosecond real-time single-shot digitizer," Appl. Phys. Lett. 91, 161105 (2007).
[CrossRef]

Electron. Lett.

D. U. Noske and J. R. Taylor, "Picosecond optical sampling," Electron. Lett. 27, 1739 - 1741 (1991).
[CrossRef]

J. Kringlebotn and P. Morkel, "Amplified Fibre Delay Line with 27000 Recirculations," Electron. Lett. 28,201 (1992).
[CrossRef]

IEEE Phot. Tech. Lett.

J. Li, P. O. Hedekvist and P. A. Andrekson, "300-Gb/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Phot. Tech. Lett. 13, 987-989 (2001).
[CrossRef]

IEEE Phot. Tech. Letters

K. L. Deng, R. J. Runser, I. Glesk, and P. R. Prucnal, "Single-shot optical sampling oscilloscope for ultrafast optical waveforms," IEEE Phot. Tech. Letters 10, 397-399(1998).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Takagi, Y. Yamada, K. Ishikawa, S. Shimizu, and S. Sakabe, "Ultrafast single-shot optical oscilloscope based on time-to-space conversion due to temporal and spatial walk-off effects in nonlinear mixing crystal," Jpn. J. Appl. Phys. 44, 6546-6549 (2005).
[CrossRef]

Nature

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-84 (2008).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. A

Y. Yin, A. Chen, W. Zhang, G. Chen, and X. Wen, "Multichannel singe-shot transient signal measurements with a fiber delay line loop," Nucl. Instrum. Methods Phys. Res. A 517, 343-348 (2004).
[CrossRef]

Opt. Commun.

A. Jolly, J. C. Jolly, and J. F. Gleyze, "Static and Synchronised Switching Noise Management of Replicated Optical Pulse Trains," Opt. Commun. 264, 89-96 (2006).
[CrossRef]

A. Jolly and C. Granier, "All-Optical Sampling with Sagnac Switches Using Closed Pump and Signal Wavelengths near 1µm," Opt. Commun. 281, 3861 - 3871 (2008).
[CrossRef]

Opt. Eng.

O. Morice, "MIRO: Complete modelling and software for pulse amplification and propagation in high - power laser systems," Opt. Eng. 42, 1530-1541 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C. Dorrer, "Single-shot measurement of the electric field of optical sources using time magnification and heterodyning," Conference on Lasers and Electro-Optics, paper CTuC6 (2006).

C. V. Bennett, B. D. Moran, C. Langrock, M. M. Fejer, and M. Ibsen, " 640 GHz real-time recording using temporal imaging," Conference on Lasers and Electro-Optics, paper CTuA6 (2008).

P. A. Andrekson, "Ultrahigh bandwidth optical sampling oscilloscopes," Optical Fiber Conference, Inv. paper TuO1 (2004).

D. Besnard, La ligne d’intégration laser - Présentation du thème, CHOCS 29, revue scientifique et technique CEA / DAM (2004).

T. Yoshimatsu, S. Kodama, and H. Ito, "Novel ultrafast monolithic optical gate integrating uni-travelling-carrier photodiode and InP-based Mach-Zehnder modulator," ECOC Conference, paper Th 261 (2005).

D. A. Reid, P. J. Maguire, L. P. Barry, Q. T. Le, S. Lobo, M. Gay, L. Bramerie, M. Joindot, J. C. Simon, D. Massoubre, J. L. Oudar, and G. Aubin, "All-optical sampling in a multiple quantum well saturable absorber," Optical Fiber Conference, paper OthG4 (2008).

M. Skold, M. Westlund, H. Sunnerud, and P. A. Andrekson, "100 Gsample/s optical real-time sampling system with Nyquist-limited bandwidth," ECOC Conference, postdeadline paper (2007).

C. Dorrer, J. Bromage, and J.D. Zuegel, " High-dynamic-range, single-shot cross-correlator using a pulse replicator," Conference on Lasers and Electro-Optics, paper JTuA51 (2008).

G. P. Agrawal, Nonlinear Fiber Optics, Ed. by P.F. Liao and P.L. Kelley, (Academic Press Inc 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The optical set-up: (A-B-C-D)=50/50% PM couplers, (E-F)=ytterbium-doped PM Fibre Amplifiers; (G)=erbium-doped PM Fibre Amplifier; (H)=isolator; (I-J)=ASE PM filters; (K-L-M)=polarisation controllers; (N)=non linear PM fibre, (O)=PM fibre length

Fig. 2.
Fig. 2.

Modelling the switched Sagnac loop to determine the expected sampling resolution versus the sizing data: spectral densities of power of the sampling source (a) and of the signal (b), signal intensity at 1053 nm upstream, inside and downstream the loop (c).

Fig. 3.
Fig. 3.

Management of bandwidth issues: adjustment of ASE filters in the re-circulating loop to equalize the spectral gain distribution (top) and adjustment of the input spectral density of power near 1053 nm with the help of sinusoidal beats (bottom).

Fig. 4.
Fig. 4.

Control of the synchronization features to operate the stroboscope process, by means of pulse-shape reconstruction in the situation of a low signal bandwidth and of a low sampling rate: single-shot chronograms using a single-frequency input pulse (a) and superimposed sinusoidal beats (b).

Fig. 5.
Fig. 5.

Variation of the signal bandwidth to evidence the single-shot sampling performance: the replicated optical pulse train (A) and sampled pulse train (B) at FFB=150 MHz, the sample pulse train at FFB=2 GHz near the resolution limit for direct visualization (C), with FFB=30 GHz (D), and FFB=100 GHz (E), together with the control of the spectral density of power at FFB=100 GHz (F). The vertical axis involves the optical power (arbitrary units) and the horizontal axis figures the time axis, as referred to the temporal scale inset.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

TFB=1FFB=λ2cΔλFB

Metrics