Abstract

We show the opportunity of fabricating axially symmetric waveplates fine tuned to a desired wavelength. High quality waveplates are obtained using liquid crystal polymer layers on photoaligning substrates extending their functional range from UV to IR wavelengths. We characterize the effect of the waveplate on laser beams showing formation of a doughnut beam with over 240 times attenuation of intensity on the axis. We pay attention that the power density is strongly reduced on the doughnut ring as well and use this opportunity for taking charge coupled devices (CCDs) out of a deep saturation regime. Strong deformation of the beam profile is observed when the vortex axis is shifted towards the periferies of the beam. We demonstrate feasibility of using this phenomenon for shaping the profile of light beams with a set of waveplates.

© OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989).
    [CrossRef]
  2. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
    [CrossRef]
  3. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (1–3) (2006).
  4. S. C. McEldowney, D. M. Shemo, R. A. Chipman, and P. K. Smith, “Creating vortex retarders using photoaligned liquid crystal polymers,” Opt. Lett. 33(2), 134–136 (2008).
    [CrossRef]
  5. H. Choi, J. H. Woo and J. W. Wu, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett. 91, 141112 (1–3) (2007).
  6. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 282(1), 1–64 (1997).
    [CrossRef]
  7. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [CrossRef]
  8. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Schwaighofer, S. Fuerhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
    [CrossRef]
  9. G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26(8), 497–499 (2001).
    [CrossRef]
  10. S. Bernet, A. Jesacher, S. Fuerhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [CrossRef]
  11. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
    [CrossRef]
  12. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
    [CrossRef]
  13. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12(22), 5475–5480 (2004).
    [CrossRef]
  14. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006).
    [CrossRef]
  15. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002).
    [CrossRef]
  16. Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
    [CrossRef]
  17. H. Ren, Y.-H. Lin and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (1–3) (2006).
  18. S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).
  19. Y. Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008).
    [CrossRef]
  20. S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
    [CrossRef]
  21. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
    [CrossRef]
  22. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).
  23. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, O. Yu. Moiseev, and V. A. Soifer, “Simple optical vortices formed by a spiral phase plate,” J. Opt. Technol. 74, 686–693 (2007).
  24. J. F. Nye and M. V. Berry, ““Dislocations in wave trains,” Proc. Roy. Soc. London, Ser,” A 336, 165–190 (1974).
  25. N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

2009 (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

2008 (3)

2007 (2)

2006 (2)

2005 (1)

2004 (1)

2002 (2)

2001 (1)

2000 (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

1999 (1)

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

1997 (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 282(1), 1–64 (1997).
[CrossRef]

1996 (2)

S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996).
[CrossRef]

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989).
[CrossRef]

1981 (1)

N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

1974 (1)

J. F. Nye and M. V. Berry, ““Dislocations in wave trains,” Proc. Roy. Soc. London, Ser,” A 336, 165–190 (1974).

Baranova, N. B.

N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

Bernet, S.

Berry, M. V.

J. F. Nye and M. V. Berry, ““Dislocations in wave trains,” Proc. Roy. Soc. London, Ser,” A 336, 165–190 (1974).

Bhandari, R.

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 282(1), 1–64 (1997).
[CrossRef]

Biener, G.

Bomzon, Z.

Chapin, S. C.

Chipman, R. A.

Cooper, J.

Courtial, J.

Dufresne, E. R.

Fuerhapter, S.

Fuh, A. Y.-G.

Fürhapter, S.

Gan, X.

Ganic, D.

Germain, V.

Gu, M.

Hain, M.

Hasman, E.

Jesacher, A.

Jordan, P.

Ke, S.-W.

Khonina, S. N.

Kim, H. R.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Kimball, B. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).

Kleiner, V.

Ko, S.-W.

Kotlyar, V. V.

Kovalev, A. A.

Laczik, Z. J.

Lee, J. H.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lee, S. D.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lin, T.-H.

Masuda, S.

S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).

Maurer, C.

McEldowney, S. C.

Moiseev, O. Yu.

Nersisyan, S. R.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Nose, T.

S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989).
[CrossRef]

Nye, J. F.

J. F. Nye and M. V. Berry, ““Dislocations in wave trains,” Proc. Roy. Soc. London, Ser,” A 336, 165–190 (1974).

Padgett, M.

Ritsch-Marte, M.

Sato, S.

S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989).
[CrossRef]

Schadt, M.

Schwaighofer, A.

Shemo, D. M.

Shum, P.

Sinclair, G.

Skidanov, R. V.

Smith, P. K.

Soifer, V. A.

Somalingam, S.

Stalder, M.

Stankovic, S.

Steeves, D. M.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).

Sun, X. W.

Swartzlander, G. A.

Tabiryan, N. V.

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).

Ting, C.-L.

Tschudi, T.

Tzeng, Y. Y.

Tzeng, Y.-Y.

Wang, Q.

Ya, B.

N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

Yamaguchi, R.

S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989).
[CrossRef]

Yin, X. J.

Zel’dovich, A. V.

N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

A (1)

J. F. Nye and M. V. Berry, ““Dislocations in wave trains,” Proc. Roy. Soc. London, Ser,” A 336, 165–190 (1974).

Appl. Opt. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).

Appl. Phys. Lett. (1)

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009).
[CrossRef]

J. Opt. Technol. (1)

JETP Lett. (1)

N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

Jpn. J. Appl. Phys. (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989).
[CrossRef]

Opt. Express (7)

A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Schwaighofer, S. Fuerhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007).
[CrossRef]

G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12(22), 5475–5480 (2004).
[CrossRef]

S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006).
[CrossRef]

S. Bernet, A. Jesacher, S. Fuerhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[CrossRef]

Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005).
[CrossRef]

Y. Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008).
[CrossRef]

S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008).
[CrossRef]

Opt. Lett. (5)

Phys. D: Appl. Phys. (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000).
[CrossRef]

Phys. Rep. (1)

R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 282(1), 1–64 (1997).
[CrossRef]

Proc. SPIE (1)

S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).

Other (3)

H. Choi, J. H. Woo and J. W. Wu, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett. 91, 141112 (1–3) (2007).

L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (1–3) (2006).

H. Ren, Y.-H. Lin and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (1–3) (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics