Abstract

Numerical simulations on different kinds of realistic photonic bandgap fibers exhibiting reversed dispersion slope for the propagating fundamental mode are reported. We show that reversed or flat dispersion functions in a wide wavelength range using hollow-core, air-silica photonic bandgap fibers and solid core Bragg fibers with step-index profile can be obtained by introducing resonant structures in the fiber cladding. We evaluate the dispersion and confinement loss profiles of these fibers from the Helmholtz eigenvalue equation and the calculated fiber properties are used to investigate the propagation of chirped femtosecond pulses through serially connected hollow core fiber compressors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006).
    [CrossRef]
  2. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1mm using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006).
    [CrossRef] [PubMed]
  3. A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007).
    [CrossRef] [PubMed]
  4. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highlydispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
    [CrossRef] [PubMed]
  5. H. Lim, F. Ilday, and F. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
    [PubMed]
  6. J.W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007).
    [CrossRef] [PubMed]
  7. J. Jasapara, Tsing Hua Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003).
    [CrossRef]
  8. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, "Material effects in air-guiding photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2046-2051 (2003).
    [CrossRef]
  9. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
    [CrossRef] [PubMed]
  10. Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipőcs, "Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers," Opt. Express 16, 15603-15616 (2008).
    [CrossRef] [PubMed]
  11. J. Jasapara, R. Bise, T. Her, and J. W. Nicholson, "Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper ThI3.
  12. T. Engeness, M. Ibanescu, S. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1196 (2003).
    [CrossRef] [PubMed]
  13. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Dispersion design of all-solid photonic bandgap fiber," J. Opt. Soc. Am. B 24, 2899-2905 (2007).
    [CrossRef]
  14. P. J. Roberts, "Control of dispersion in hollow core photonic crystal fibers," Conference on Lasers and Electro-Optics 2007 CLEO proceedings 2007, p. 1630, presentation CWF2.
  15. J. Lægsgaard, P. J. Roberts and M. Bache, "Tailoring the Dispersion Properties of Photonic Crystal Fibers," Optical and Quantum Electronics 39, 995-1008 (2007).
    [CrossRef]
  16. J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE Trans. Quant. Electron. QE-22, 182-185 (1986).
    [CrossRef]
  17. H. A. Macleod, Thin-film optical filters third edition, (J W Arrowsmith Ltd, Bristol, GB 2001).
  18. J. Fekete, Z. Várallyay and R. Szipőcs, "Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light," Appl. Opt. 47, 5330-5336 (2008).
    [CrossRef] [PubMed]
  19. R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).
  20. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
    [CrossRef] [PubMed]
  21. K. Saitoh, N.J. Florous, T. Murao, and M. Koshiba, "Realistic design of large-hollow-core photonic band-gap fibers with suppressed higher order modes and surface modes," J. Lightwave Technol. 25, 2440-2447 (2007).
    [CrossRef]
  22. M. Sumetsky and S. Ramachandran, "Multiple mode conversion and beam shaping with superimposed long period gratings," Opt. Express 16, 402-412 (2008).
    [CrossRef] [PubMed]
  23. J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, "Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber," Opt. Lett. 32, 2429-2431 (2007).
    [CrossRef] [PubMed]
  24. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express,  13, 8277-8285 (2005).
    [CrossRef] [PubMed]
  25. T. Murao, K. Saitoh, and M. Koshiba, "Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides," J. Lightwave Technol.,  26, 1602-1612, (2008).
    [CrossRef]
  26. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007).
    [CrossRef] [PubMed]
  27. L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
    [CrossRef]
  28. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B,  20, 2037-2045 (2003).
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics, fourth edition (Academic, San Diego, CA, 2007) Chapter 2.
  30. Z. Várallyay, J. Fekete, Á. Bányász and R. Szipőcs, "Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF," Appl. Phys. B 86, 567-572 (2007).
    [CrossRef]

2008

2007

C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007).
[CrossRef] [PubMed]

K. Saitoh, N.J. Florous, T. Murao, and M. Koshiba, "Realistic design of large-hollow-core photonic band-gap fibers with suppressed higher order modes and surface modes," J. Lightwave Technol. 25, 2440-2447 (2007).
[CrossRef]

Z. Várallyay, J. Fekete, Á. Bányász and R. Szipőcs, "Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF," Appl. Phys. B 86, 567-572 (2007).
[CrossRef]

J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, "Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber," Opt. Lett. 32, 2429-2431 (2007).
[CrossRef] [PubMed]

Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Dispersion design of all-solid photonic bandgap fiber," J. Opt. Soc. Am. B 24, 2899-2905 (2007).
[CrossRef]

J. Lægsgaard, P. J. Roberts and M. Bache, "Tailoring the Dispersion Properties of Photonic Crystal Fibers," Optical and Quantum Electronics 39, 995-1008 (2007).
[CrossRef]

J.W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007).
[CrossRef] [PubMed]

2006

2005

2003

2002

2000

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

1986

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE Trans. Quant. Electron. QE-22, 182-185 (1986).
[CrossRef]

Andrejco, M. J.

Apai, P.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Bache, M.

J. Lægsgaard, P. J. Roberts and M. Bache, "Tailoring the Dispersion Properties of Photonic Crystal Fibers," Optical and Quantum Electronics 39, 995-1008 (2007).
[CrossRef]

Bányász, Á.

Z. Várallyay, J. Fekete, Á. Bányász and R. Szipőcs, "Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF," Appl. Phys. B 86, 567-572 (2007).
[CrossRef]

Birks, T. A.

Bise, R.

Bjarklev, A.

Broeng, J.

Couny, F.

Cucinotta, A.

L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
[CrossRef]

de Matos, C.

DeBell, G.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

DiGiovanni, D.

DiGiovanni, D. J.

Dong, X.

Engelbrecht, M.

Engeness, T.

Fang, Q.

Fekete, J.

Fink, Y.

Florous, N.J.

Gaeta, A.

Gaeta, A. L.

Gallagher, M.

Gallagher, M. T.

Ghalmi, S.

Hansen, K.

Hansen, T.

Headley, C.

Hensley, C.

Hensley, C. J.

Heppner, J.

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE Trans. Quant. Electron. QE-22, 182-185 (1986).
[CrossRef]

Ibanescu, M.

Ilday, F.

Jacobs, S.

Jasapara, J.

Jasapara, J. C.

Jespersen, K. G.

Jin, L.

Johnson, S.

Kai, G.

Kakihara, K.

Keiding, S. R.

Knight, J. C.

Koch, K.

Koch, K. W.

Koházi-Kis, A.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Koshiba, M.

Kovács, A. P.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Kracht, D.

Kuhl, J.

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE Trans. Quant. Electron. QE-22, 182-185 (1986).
[CrossRef]

Lægsgaard, J.

Lakó, S.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Lim, H.

Liu, J.

Liu, Y.

Louderback, A.W.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Maini, M.

L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
[CrossRef]

Mangan, B. J.

Mortensen, N. A.

Mott, L.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Murao, T.

Nicholson, J. W.

Nicholson, J.W.

Nielsen, C. K.

Ouzounov, D.

Ouzounov, D. G.

Poli, F.

L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
[CrossRef]

Prochnow, O.

Ramachandran, S.

Riishede, J.

Roberts, P. J.

Ruehl, A.

Russell, P. St. J.

Sabert, H.

Saitoh, K.

Selleri, S.

L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
[CrossRef]

Skorobogatiy, M.

Sumetsky, M.

Szipocs, R.

Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipőcs, "Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers," Opt. Express 16, 15603-15616 (2008).
[CrossRef] [PubMed]

J. Fekete, Z. Várallyay and R. Szipőcs, "Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light," Appl. Opt. 47, 5330-5336 (2008).
[CrossRef] [PubMed]

Z. Várallyay, J. Fekete, Á. Bányász and R. Szipőcs, "Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF," Appl. Phys. B 86, 567-572 (2007).
[CrossRef]

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Taylor, J.

Tikhonravov, A. V.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Trubetskov, M. K.

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Tsing Hua Her, J.

Várallyay, Z.

Venkataraman, N.

Venkateraman, N.

Vincetti, L.

L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
[CrossRef]

Wadsworth, W. J.

Wandt, D.

Wang, Z.

Weisberg, O.

Williams, D. P.

Windeler, R.

Wise, F.

Yablon, A. D.

Yuan, S.

Yue, Y.

Appl. Opt.

Appl. Phys. B

R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).

Z. Várallyay, J. Fekete, Á. Bányász and R. Szipőcs, "Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF," Appl. Phys. B 86, 567-572 (2007).
[CrossRef]

IEEE Trans. Quant. Electron.

J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE Trans. Quant. Electron. QE-22, 182-185 (1986).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. and Quantum Electron.

L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006).
[CrossRef]

Opt. Express

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express,  13, 8277-8285 (2005).
[CrossRef] [PubMed]

C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007).
[CrossRef] [PubMed]

M. Sumetsky and S. Ramachandran, "Multiple mode conversion and beam shaping with superimposed long period gratings," Opt. Express 16, 402-412 (2008).
[CrossRef] [PubMed]

T. Engeness, M. Ibanescu, S. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1196 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipőcs, "Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers," Opt. Express 16, 15603-15616 (2008).
[CrossRef] [PubMed]

C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1mm using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006).
[CrossRef] [PubMed]

C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highlydispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
[CrossRef] [PubMed]

H. Lim, F. Ilday, and F. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
[PubMed]

J.W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Optical and Quantum Electronics

J. Lægsgaard, P. J. Roberts and M. Bache, "Tailoring the Dispersion Properties of Photonic Crystal Fibers," Optical and Quantum Electronics 39, 995-1008 (2007).
[CrossRef]

Other

P. J. Roberts, "Control of dispersion in hollow core photonic crystal fibers," Conference on Lasers and Electro-Optics 2007 CLEO proceedings 2007, p. 1630, presentation CWF2.

H. A. Macleod, Thin-film optical filters third edition, (J W Arrowsmith Ltd, Bristol, GB 2001).

J. Jasapara, R. Bise, T. Her, and J. W. Nicholson, "Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper ThI3.

G. P. Agrawal, Nonlinear Fiber Optics, fourth edition (Academic, San Diego, CA, 2007) Chapter 2.

Supplementary Material (1)

» Media 1: MOV (1812 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic illustration of a GT interferometer between core and cladding in a PBG fiber.

Fig. 2.
Fig. 2.

First- and second-order resonances on GD and GDD curves of GT interferometer for oblique incidence with 4.02 and 1.34µm thicknesses, n 0=1.45, n 1=1.46 and θ 0=87°. Calculated from the derived Eq. (5).

Fig. 3.
Fig. 3.

(a) SC Bragg fiber with periodic annular layers, (b) SC Bragg fiber with a resonant first layer having a refractive index of nGT and thickness of dGT and (c) parameters of the fiber.

Fig. 4.
Fig. 4.

Dispersion and confinement loss profiles of different GTIs realized around the core in an SC Bragg PBG fiber. (a) dispersion functions with different thicknesses of GTI, (b) dispersion functions with GTI having different refractive indices, (c) confinement loss belonging to the case changing GTI thicknesses and (d) confinement loss with different GTI refractive indices.

Fig. 5.
Fig. 5.

Propagating fundamental mode profiles at 980 nm, 1060 nm and 1140 nm wavelengths. The embedded graph zooms to the close surrounding of GTI. Vertical black lines show the region where the refractive index n GTI=1.46. Inset shows the 2D distribution of the propagating fundamental mode at 1060 nm. (Media 1)

Fig. 6.
Fig. 6.

Regular HC fiber structure (a), fiber structure with core expansion (b) and the model parameters (c).

Fig. 7.
Fig. 7.

Dispersion functions of the designed HC PBG fiber with (a) different core wall thicknesses and (b) different core expansion coefficients.

Fig. 8.
Fig. 8.

Mode distribution for one particular polarization component of LP01 at (a) 1000 nm, (b) 1050 nm and (c) 1100 nm.

Fig. 9.
Fig. 9.

Confinement losses of HC PBG fibers with E=0 and E=0.187 core expansion factors.

Fig. 10.
Fig. 10.

(a) Coupling loss calculated from the overlap integral between LP01 modes of different fibers. “C1” refers to the coupling between the Bragg fiber without GTI and a step-index fiber; “C2” is the coupling between two Bragg fibers with and without GTI and both Rc is 6 µm; “C3” is the coupling between step-index and Bragg fiber with GTI and “C4” is the improved coupling between two Bragg fibers with and without GTI by changing the core size of the Bragg fiber without GTI. (b) Coupling loss as a function of wavelength between HC RDS and step index fibers with different index profiles using a core size of 5 µm.

Fig. 11.
Fig. 11.

The η-factor of the fundamental air-core mode as a function of wavelength with d/Λ=0.98, dc/Λ=0.70, dp /Λ=0.30, Λ=2.85 µm, T=t/(Λ-d)=0.30, and the expansion coefficient is set to E=0% and 18.7%.

Fig. 12.
Fig. 12.

The nonlinear coefficient γ as a function of wavelength in (a) a 7-cell hollow-core PBG fiber with and without core expansion and (b) in a Bragg fiber with and without resonant GTI.

Fig. 13.
Fig. 13.

(a) obtained shortest pulse duration and the corresponding quality factor calculated at different input pulse energies. Optimum lengths of HC PCF (L 1) and HC RDS fiber (L2) are shown at the point where the light energy in the main peak is 91%. (b) pulse temporal and spectral (inset) shape at the energy level (28.8 nJ). Optimum pulse shape using only non-RDS fiber shows a regular shape with only small distortions and 98.4% QF. The length of the used HC-1060 fiber was 0.63 m.

Fig. 14.
Fig. 14.

(a) Pulse FWHM and quality as a function of pulse energy, (b) temporal and spectral shape at QF=90.4%, (c) pulse FWHM evaluation as a function of pulse energy with GDD0=5 · 105 fs2 input chirp, (d) pulse shapes with combined and HC-1060 type fiber compressors.

Tables (1)

Tables Icon

Table 1. Simulation parameters.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ρ=η0Aη0+A
A=η2cos(δ)+iη1sin(δ)cos(δ)+i(η2η1)sin(δ)
δ=ωcn1dGTcos(θ1)
ρ=η0iη1tan(δ)η0+iη1tan(δ)
tanϕ=2η0η1tan(δ)η02+η12tan2(δ)
η0=n0Ycos(θ0),
η1=n1Ycos(θ1),
θ0=arcsin (neffn0)
Rc=(E+1)(1.5Λt2
μ(λ)=02π0ψ(1)(r,ϕ,λ)ψ(2)*(r,ϕ,λ)rdrdϕ
η=glassannulus(E×H*)ẑdAcrosssection(E×H*)ẑdA
γ=γair+γsilica=2πn2airλAeffair+2πn2silicaλAeffsilica
Aeffi=(crosssection(E×H*)ẑdA)2ni2ε02c2AiE4dA
β2(1)L(1)+β2(2)L(2)+GDD0=0
β3(1)L(1)+β3(2)L(2)+TOD0=0
E(z,t)z+(Σk=2Nβkik1k!ktk)E+α2E=i γ (E2E+iω0t(E2E)TREE2t)

Metrics